cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 95 results. Next

A255369 a(n) = (sigma(n)-n-1)*(2-mu(n)), where sigma(n) is the sum of the divisors of n and mu(n) is the Möbius function.

Original entry on oeis.org

-1, 0, 0, 4, 0, 5, 0, 12, 6, 7, 0, 30, 0, 9, 8, 28, 0, 40, 0, 42, 10, 13, 0, 70, 10, 15, 24, 54, 0, 123, 0, 60, 14, 19, 12, 108, 0, 21, 16, 98, 0, 159, 0, 78, 64, 25, 0, 150, 14, 84, 20, 90, 0, 130, 16, 126, 22, 31, 0, 214, 0, 33, 80, 124, 18, 231, 0, 114
Offset: 1

Views

Author

Wesley Ivan Hurt, May 04 2015

Keywords

Comments

a(n) = 0 if and only if n is prime. If n is semiprime, then a(n) = sopfr(n).

Crossrefs

Cf. A000203 (sigma), A008683 (Möbius function), A001414 (sopfr).
Cf. A048050 (Chowla's function), A228483 (2-mu(n)).

Programs

  • Magma
    [(SumOfDivisors(n)-n-1)*(2-MoebiusMu(n)): n in [1..80]]; // Vincenzo Librandi, May 05 2015
    
  • Maple
    with(numtheory): a:=n->(sigma(n)-n-1)*(2-mobius(n)): seq(a(n), n=1..100);
  • Mathematica
    Table[(DivisorSigma[1, n] - n - 1) (2 - MoebiusMu[n]), {n, 100}]
  • PARI
    a(n)=(sigma(n)-n-1)*(2-moebius(n)) \\ Dana Jacobsen, May 13 2015
  • Perl
    use ntheory ":all"; say +(divisor_sum($)-$-1)*(2-moebius($)) for 1..80;  # _Dana Jacobsen, May 13 2015
    

Formula

a(n) = A048050(n) * A228483(n) for n > 1, a(1) = -1.

Extensions

Formula corrected for case n=1 by Antti Karttunen, Feb 25 2018

A257533 Sum of the proper divisors of the n-th semiprime.

Original entry on oeis.org

2, 5, 3, 7, 9, 8, 10, 13, 5, 15, 14, 19, 12, 21, 16, 25, 7, 20, 16, 22, 31, 33, 18, 26, 39, 18, 43, 22, 45, 32, 20, 34, 49, 24, 55, 40, 28, 61, 24, 11, 63, 44, 46, 26, 69, 50, 73, 24, 34, 75, 36, 81, 56, 30, 85, 13, 62, 91, 64, 42, 28, 99, 70
Offset: 1

Views

Author

R. J. Mathar, Apr 28 2015

Keywords

Comments

For purposes of this sequence, the proper divisors of a number include all divisors other than 1 and the number itself. - Harvey P. Dale, Mar 15 2022

Crossrefs

Cf. A083681.

Programs

  • Maple
    seq(A048050(A001358(n)),n=1..80) ;
  • Mathematica
    Total[Rest[Most[Divisors[#]]]]&/@Select[Range[250],PrimeOmega[#]==2&] (* Harvey P. Dale, Mar 15 2022 *)
  • PARI
    go(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), listput(v,[p*q,if(qu[2],v) \\ Charles R Greathouse IV, Apr 28 2015

Formula

a(n) = A048050(A001358(n)).
A083681(n)-a(n) = A088707(n).

A273460 Numbers n such that sum of the divisors of n (except 1 and n) is equal to the product of the digits of n.

Original entry on oeis.org

98, 101, 103, 107, 109, 307, 329, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1201, 1301, 1303, 1307, 1409, 1601, 1607, 1609, 1709, 1801, 1901
Offset: 1

Views

Author

Michel Lagneau, May 23 2016

Keywords

Comments

Or numbers n such that A048050(n) = A007954(n).
Most of the terms are primes which have at least one 0 among their digits (A056709). The composite numbers of the sequence are 98, 329, 3383, 4343, 5561, 6623, 12773, 17267, 21479, 57721, 129383, 136259, 142943, 172793, 246959, 256631, 292571,...

Examples

			sigma(98) - 98 - 1 = 171 - 98 - 1 = 72 and 8*9 = 72 so 98 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 3000 do:
      q:=convert(n,base,10):n0:=nops(q):
      pr:=product('q[i]', 'i'=1..n0):p:=sigma(n)-n-1:
       if p=pr
        then
        printf(`%d, `,n):
        else
       fi:
    od:
  • Mathematica
    Do[If[DivisorSigma[1, n]-n-1==Apply[Times, IntegerDigits[n]], Print[n]], {n, 2000}]
    Select[Range[2,2000],Total[Most[Rest[Divisors[#]]]]==Times@@ IntegerDigits[ #]&] (* Harvey P. Dale, Jul 20 2019 *)

A281006 a(n) = A000203(n) - A052928(n-1).

Original entry on oeis.org

1, 3, 2, 5, 2, 8, 2, 9, 5, 10, 2, 18, 2, 12, 10, 17, 2, 23, 2, 24, 12, 16, 2, 38, 7, 18, 14, 30, 2, 44, 2, 33, 16, 22, 14, 57, 2, 24, 18, 52, 2, 56, 2, 42, 34, 28, 2, 78, 9, 45, 22, 48, 2, 68, 18, 66, 24, 34, 2, 110, 2, 36, 42, 65, 20, 80, 2, 60, 28, 76, 2, 125, 2, 42, 50, 66, 20, 92, 2, 108, 41, 46, 2, 142, 24, 48, 34, 94, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 23 2017

Keywords

Comments

a(n) = 2 iff n is an odd prime (A065091).
Has a symmetric representation as a narrow pyramid with holes, in the same way as A249351.

Examples

			A000203    A052928     a(n)
.   1    -    0    =    1
.   3    -    0    =    3
.   4    -    2    =    2
.   7    -    2    =    5
.   6    -    4    =    2
.  12    -    4    =    8
...
		

Crossrefs

Programs

Formula

a(n) = sigma(n) - 2*floor((n - 1)/2) = A000203(n) - 2*A004526(n-1).
a(n) = A048050(n) + A176059(n), n >= 2.

A281626 a(n) = (sum of trivial divisors of n) - (sum of nontrivial divisors of n).

Original entry on oeis.org

1, 3, 4, 3, 6, 2, 8, 3, 7, 4, 12, -2, 14, 6, 8, 3, 18, -1, 20, 0, 12, 10, 24, -10, 21, 12, 16, 2, 30, -10, 32, 3, 20, 16, 24, -17, 38, 18, 24, -8, 42, -10, 44, 6, 14, 22, 48, -26, 43, 9, 32, 8, 54, -10, 40, -6, 36, 28, 60, -46, 62, 30, 24, 3, 48, -10, 68, 12
Offset: 1

Views

Author

Jaroslav Krizek, Feb 11 2017

Keywords

Comments

Trivial divisors of n are numbers 1 and n.
a(n) = 0 for numbers in A088831 (numbers n whose abundance is 2).
a(n) <= 0 for numbers in A005101 (abundant numbers).
a(n) > 0 for numbers in A263837 (non-abundant numbers).

Examples

			a(20) = (20+1) - (2+4+5+10) = 0.
		

Crossrefs

Programs

  • Magma
    [1] cat [2*(n+1) - SumOfDivisors(n): n in [2..100]];
  • Mathematica
    Table[If[n == 1, 1, 2 (n + 1) - DivisorSigma[1, n]], {n, 68}] (* Michael De Vlieger, Feb 11 2017 *)

Formula

a(1) = 1; for n>1, a(n) = (n+1) - (sigma(n) - n - 1) = 2*(n+1) - sigma(n) = n + 1 - A048050(n).
a(A000396(n)) = 2 for n >= 1.
a(A000079(n)) = 3 for n >= 1.
a(A006881(n)) = phi(n).
a(p) = p + 1 for p prime.

A291108 Expansion of Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).

Original entry on oeis.org

0, 0, 0, 4, 0, 13, 0, 20, 9, 29, 0, 65, 0, 53, 34, 84, 0, 130, 0, 145, 58, 125, 0, 273, 25, 173, 90, 265, 0, 399, 0, 340, 130, 293, 74, 614, 0, 365, 178, 609, 0, 735, 0, 625, 340, 533, 0, 1105, 49, 754, 298, 865, 0, 1183, 146, 1113, 370, 845, 0, 1859, 0, 965, 580, 1364, 194, 1743, 0, 1465, 538, 1599, 0, 2550, 0, 1373, 884
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Sum of squares of divisors of n except 1 and n^2 (sum of squares of nontrivial divisors of n).

Examples

			a(6) = 13 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are nontrivial {2, 3} and 2^2 + 3^2 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; Rest[CoefficientList[Series[Sum[k^2 x^(2 k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]]
    Join[{0}, Table[DivisorSigma[2, n] - n^2 - 1, {n, 2, 75}]]
  • PARI
    A291108(n) = sumdiv(n,d,if((1==d)||(n==d),0,d^2)); \\ Antti Karttunen, Jan 22 2025

Formula

G.f.: Sum_{k>=2} k^2*x^(2*k)/(1 - x^k).
a(n) = A001157(n) - A000290(n) - 1 for n > 1.
a(n) = A067558(n) - 1 for n > 1.
a(n) = A005063(n) if n is a semiprime (A001358).
a(n) = 0 if n is a prime or 1 (A008578).
a(n) = n if n is a square of prime (A001248).
a(p^k) = (p^(2*k) - p^2)/(p^2 - 1) for p is a prime and k > 0.

A294149 Numbers k such that the sum of divisors of k is divisible by the sum of nontrivial divisors of k (that is, excluding 1 and k).

Original entry on oeis.org

15, 20, 35, 95, 104, 119, 143, 207, 209, 287, 319, 323, 377, 464, 527, 559, 650, 779, 899, 923, 989, 1007, 1023, 1189, 1199, 1343, 1349, 1519, 1763, 1919, 1952, 2015, 2159, 2507, 2759, 2911, 2915, 2975, 3239, 3599, 3827, 4031, 4199, 4607, 5183, 5207, 5249
Offset: 1

Views

Author

Zdenek Cervenka, Oct 23 2017

Keywords

Comments

Numbers k such that sigma(k)/(sigma(k)-k-1) is a positive integer.

Examples

			15 is in the sequence since sigma(15)/(sigma(15)-15-1) = 24/8 = 3.
		

Crossrefs

Subsequence of A002808 (composite numbers).
Cf. A088831 (k=2), A063906 (k=3).

Programs

  • Mathematica
    Quiet@ Select[Range[2, 5300], And[IntegerQ[#], # > 1] &[#2/(#2 - #1 - 1)] & @@ {#, DivisorSigma[1, #]} &] (* Michael De Vlieger, Oct 24 2017 *)
  • PARI
    lista(nn) = forcomposite(n=1, nn, if (denominator(sigma(n)/(sigma(n)-n-1)) == 1, print1(n, ", "))); \\ Michel Marcus, Oct 24 2017
    
  • PARI
    list(lim)=my(v=List(),s,t); forfactored(n=9,lim\1, s=sigma(n); t=s-n[1]-1; if(t && s%t==0, listput(v, n[1]))); Vec(v) \\ Charles R Greathouse IV, Nov 11 2017

Formula

This sequence gives all numbers a(n) in increasing order which satisfy A000203(a(n))/A048050(a(n)) = A000203(a(n))/(A000203(a(n)) - (a(n)+1)) = k(n), with a positive integer k(n) for n >= 1. - Wolfdieter Lang, Nov 10 2017

Extensions

Edited by Wolfdieter Lang, Nov 10 2017
Name corrected by Michel Marcus, Nov 12 2017

A309400 Irregular triangle read by rows in which row n lists in reverse order the partitions of n into equal parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 5, 5, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2019

Keywords

Comments

The number of parts in row n equals sigma(n) = A000203(n), the sum of the divisors of n. More generally, the number of parts congruent to 0 (mod m) in row m*n equals sigma(n).
The number of parts greater than 1 in row n equals A001065(n), the sum of the aliquot parts of n.
The number of parts greater than 1 and less than n in row n equals A048050(n), the sum of divisors of n except for 1 and n.
The number of partitions in row n equals A000005(n), the number of divisors of n.
The number of partitions in row n with an odd number of parts equals A001227(n).
The sum of odd parts in row n equals the sum of parts of the partitions in row n that have an odd number of parts, and equals the sum of all parts in the partitions of n into consecutive parts, and equals A245579(n) = n*A001227(n).
The sum of row n equals n*A000005(n) = A038040(n).
Records in row n give the n-th row of A027750.
First n rows contain A000217(n) 1's.
The number of k's in row n is A126988(n,k).
The number of odd parts in row n is A002131(n).
The k-th block in row n has A056538(n,k) parts.
Column 1 gives A000012.
Right border gives A000027.

Examples

			Triangle begins:
[1];
[1,1], [2];
[1,1,1], [3];
[1,1,1,1], [2,2], [4];
[1,1,1,1,1], [5];
[1,1,1,1,1,1], [2,2,2], [3,3], [6];
[1,1,1,1,1,1,1], [7];
[1,1,1,1,1,1,1,1], [2,2,2,2], [4,4], [8];
[1,1,1,1,1,1,1,1,1], [3,3,3], [9];
[1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2], [5,5], [10];
[1,1,1,1,1,1,1,1,1,1,1], [11];
[1,1,1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2,2], [3,3,3,3], [4,4,4], [6,6], [12];
[1,1,1,1,1,1,1,1,1,1,1,1,1], [13];
[1,1,1,1,1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2,2,2], [7,7], [14];
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [3,3,3,3,3], [5,5,5], [15];
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [2,2,2,2,2,2,2,2], [4,4,4,4], [8,8], [16];
...
		

Crossrefs

A372836 a(n) is the numerator of Sum_{d|n, 1 < d < n} 1/d.

Original entry on oeis.org

0, 0, 0, 1, 0, 5, 0, 3, 1, 7, 0, 5, 0, 9, 8, 7, 0, 10, 0, 21, 10, 13, 0, 35, 1, 15, 4, 27, 0, 41, 0, 15, 14, 19, 12, 3, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 25, 1, 21, 20, 45, 0, 65, 16, 9, 22, 31, 0, 107, 0, 33, 40, 31, 18, 7, 0, 57, 26, 73, 0, 61, 0, 39, 16, 63, 18, 89, 0, 21
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2024

Keywords

Examples

			0, 0, 0, 1/2, 0, 5/6, 0, 3/4, 1/3, 7/10, 0, 5/4, 0, 9/14, 8/15, 7/8, 0, 10/9, ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Sum[x^(2 k)/(k (1 - x^k)), {k, 2, nmax}], {x, 0, nmax}], x] // Numerator // Rest
  • PARI
    a(n) = numerator(sumdiv(n, d, if ((d>1) && (dMichel Marcus, May 14 2024

Formula

Numerators of coefficients in expansion of Sum_{k>=2} x^(2*k) / (k * (1 - x^k)).

A062973 Chowla function of n is not divisible by phi(n).

Original entry on oeis.org

6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98
Offset: 1

Views

Author

Jason Earls, Jul 24 2001

Keywords

Comments

Chowla's function (A048050) = sum of divisors of n except 1 and n.

Programs

  • Mathematica
    okcfQ[n_]:=!Divisible[DivisorSigma[1,n]-n-1,EulerPhi[n]]
    Select[Range[100],okcfQ]  (* Harvey P. Dale, Feb 25 2011 *)
  • PARI
    j=[]; for(n=1,400, if(Mod(sigma(n)-n-1,eulerphi(n))!=0,j=concat(j,n))); j
Previous Showing 81-90 of 95 results. Next