cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A048295 Sequence of 3 Pythagorean triangles, each with a leg and hypotenuse prime. The hypotenuse of each triangle is the leg of the next triangle.

Original entry on oeis.org

271, 349, 3001, 10099, 11719, 12281, 25889, 39901, 46399, 63659, 169219, 250361, 264169, 287629, 289049, 312581, 353081, 440681, 473009, 502501, 502961, 541951, 594751, 620491, 627911, 632699, 704581, 757111, 762899, 922261, 959269
Offset: 1

Views

Author

Harvey Dubner (harvey(AT)dubner.com)

Keywords

Examples

			p(5)=271, q=36721, r=674215921, s=227283554064939121.
		

Crossrefs

Formula

For each p(n), q=(p*p+1)/2, r=(q*q+1)/2, s=(r*r+1)/2 and p, q, r, s are all prime.

Extensions

More terms from Ray Chandler, Jun 12 2019

A341210 Primes p such that (p^16 + 1)/2 is prime.

Original entry on oeis.org

3, 29, 41, 73, 113, 157, 167, 173, 199, 599, 607, 617, 1213, 1747, 1979, 2027, 2237, 2377, 2441, 2593, 2659, 2689, 2693, 3061, 3137, 3413, 3457, 3539, 3673, 3733, 3769, 4091, 4157, 4273, 4289, 4547, 4603, 4759, 4877, 4909, 4957, 5039, 5231, 5233, 5303, 5419
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 06 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, j=2^2=4, and j=2^3=8, and j=2^4=16, respectively.

Examples

			(3^16 + 1)/2 = 21523361 is prime, so 3 is a term.
(5^16 + 1)/2 = 76293945313 = 2593*29423041, so 5 is not a term.
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), (this sequence) (k=4).

Programs

  • Mathematica
    Select[Prime[Range[750]],PrimeQ[(#^16+1)/2]&] (* Harvey P. Dale, Oct 06 2023 *)
  • PARI
    isok(p) = isprime(p) && (p>2) && isprime((p^16 + 1)/2); \\ Michel Marcus, Feb 07 2021

A263951 Square numbers in A070552.

Original entry on oeis.org

9, 25, 121, 361, 841, 3481, 3721, 5041, 6241, 10201, 17161, 19321, 32761, 39601, 73441, 121801, 143641, 167281, 201601, 212521, 271441, 323761, 326041, 398161, 410881, 436921, 546121, 564001, 674041, 776161, 863041, 982081, 1062961, 1079521, 1104601, 1142761, 1190281, 1274641, 1324801
Offset: 1

Views

Author

Zak Seidov, Oct 30 2015

Keywords

Comments

All terms are == 1 (mod 8). For n > 2, a(n) == 1 (mod 120).
This sequence is a subsequence of A247687 and it contains the squares of all those primes p for which the areas of the 3 regions in the symmetric representation of p^2 (p once and (p^2 + 1)/2 twice), are primes; i.e., p^2 and p^2 + 1 are semiprimes (see A070552). The sequence of those primes p is A048161. Cf. A237593. - Hartmut F. W. Hoft, Aug 06 2020

Crossrefs

Programs

  • Mathematica
    a263951[n_] := Select[Map[Prime[#]^2&, Range[n]], PrimeQ[(#+1)/2]&]
    a263951[190] (* Hartmut F. W. Hoft, Aug 06 2020 *)
  • PARI
    forprime(p=3, 2000, if(isprime((p^2+1)/2), print1(p^2, ", "))) \\ Altug Alkan, Oct 30 2015

Formula

a(n) = A048161(n)^2.
From Hartmut F. W. Hoft, Aug 06 2020: (Start)
a(n) = 2 * A067755(n) + 1, n >= 1.
a(n+2) = 120 * A068485(n) + 1, n >= 1. (End)

A308635 Sequence of 4 Pythagorean triangles, each with a leg and hypotenuse prime. The hypotenuse of each triangle is the leg of the next triangle.

Original entry on oeis.org

169219, 1370269, 5965699, 15227879, 17750981, 19342559, 21828601, 24861761, 27379621, 34602049, 39844619, 48719711, 50049281, 51649019, 52187371, 52816609, 58026659, 73659239, 79782821, 86569771, 91316801, 96842831, 104572009
Offset: 1

Views

Author

Ray Chandler, Jun 12 2019

Keywords

Examples

			p(1)=169219, q=14317534981, r=102495903966079335181, s=5252705164911878795670904374881472151381, ...
		

Crossrefs

Formula

For each p(n), q=(p*p+1)/2, r=(q*q+1)/2, s=(r*r+1)/2, t=(s*s+1)/2 and p, q, r, s, t are all prime.

A308636 Sequence of 5 Pythagorean triangles, each with a leg and hypotenuse prime. The hypotenuse of each triangle is the leg of the next triangle.

Original entry on oeis.org

356498179, 432448789, 5380300469, 10667785241, 11238777509, 12129977791, 23439934621, 28055887949, 33990398249, 34250028521, 34418992099, 34773959159, 34821663421, 36624331189, 40410959231, 43538725229, 47426774869
Offset: 1

Views

Author

Ray Chandler, Jun 12 2019

Keywords

Examples

			p(1)=356498179, q=63545475815158021, r=63545475815158021, s=2038208257886801569993754841378314277932542447949256249537232302421, ...
		

Crossrefs

Formula

For each p(n), q=(p*p+1)/2, r=(q*q+1)/2, s=(r*r+1)/2, t=(s*s+1)/2, u=(t*t+1)/2 and p, q, r, s, t, u are all prime.

A341224 Primes p such that (p^32 + 1)/2 is prime.

Original entry on oeis.org

3, 163, 181, 191, 229, 251, 839, 971, 1181, 1201, 1489, 1801, 1823, 1847, 1861, 1987, 2069, 2087, 3547, 3691, 3697, 6361, 6637, 6899, 6967, 7793, 7963, 8731, 8737, 10253, 10271, 10613, 10639, 10799, 11981, 12689, 12697, 13697, 13841, 14951, 15299, 16547, 16747
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^5=32, respectively.

Examples

			(3^32 + 1)/2 = 926510094425921 is prime, so 3 is a term.
(5^32 + 1)/2 = 11641532182693481445313 = 641*75068993*241931001601, so 5 is not a term.
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), (this sequence) (k=5).
Cf. A000040.

Programs

  • Maple
    q:= p-> (q-> q(p) and q((p^32+1)/2))(isprime):
    select(q, [$3..20000])[];  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Select[Range[17000], PrimeQ[#] && PrimeQ[(#^32 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)
  • PARI
    isok(p) = (p>2) && isprime(p) && isprime((p^32 + 1)/2); \\ Michel Marcus, Feb 07 2021

A074173 Numbers n such that n and n+2 are of the form p^2*q where p and q are distinct primes.

Original entry on oeis.org

18, 50, 242, 423, 475, 603, 637, 722, 845, 925, 1682, 1773, 2007, 2523, 2525, 2527, 3175, 3177, 4203, 4475, 4525, 4923, 5823, 6725, 6811, 6962, 7299, 7442, 7675, 8425, 8957, 8973, 9457, 9925, 10051, 10082, 10467, 11673, 11709, 12427, 12482, 12591
Offset: 1

Views

Author

Amarnath Murthy, Aug 30 2002

Keywords

Examples

			18 is a member as 18 = 3^2*2 and 20 = 2^2*5.
		

Crossrefs

Programs

  • Mathematica
    lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 2}, f2=FactorInteger[n+2]; If[Sort[Transpose[f2][[2]]]=={1, 2}, AppendTo[lst, n]]], {n, 3, 10000}]; lst

Formula

Even terms in sequence are 2*A048161(n)^2. - Ray Chandler, Jun 24 2019

Extensions

More terms from T. D. Noe, Oct 04 2004

A118940 Primes p such that (p^2+7)/8 is prime.

Original entry on oeis.org

3, 7, 17, 23, 41, 47, 71, 89, 103, 113, 127, 137, 151, 191, 193, 199, 223, 263, 271, 281, 337, 359, 401, 439, 457, 503, 521, 569, 577, 599, 641, 719, 727, 751, 839, 857, 863, 881, 887, 929, 991, 1009, 1033, 1097, 1103, 1151, 1193, 1217, 1231, 1279, 1297, 1303
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 8 divides q^2+7.

Crossrefs

Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+7)/8]&]
  • PARI
    lista(nn) = {forprime(p=2, nn, iferr(if (isprime(q=(p^2+7)/8), print1(q, ", ")), E, ););} \\ Michel Marcus, Feb 18 2018

A341229 Primes p such that (p^64 + 1)/2 is prime.

Original entry on oeis.org

3, 353, 587, 727, 863, 883, 919, 1217, 1237, 1657, 2029, 2203, 2333, 3209, 3529, 3617, 3889, 4889, 5387, 5557, 5689, 5749, 6701, 6961, 7727, 8443, 9377, 9433, 10009, 10243, 10691, 10799, 11027, 12071, 12451, 13681, 13687, 15569, 15601, 15823, 16759, 17939
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^6=64, respectively.

Examples

			(3^64 + 1)/2 = 1716841910146256242328924544641 is prime, so 3 is a term.
(5^64 + 1)/2 = 271050543121376108501863200217485427856445313 = 769*3666499598977*96132956782643741951225664001, so 5 is not a term.
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), (this sequence) (k=6).

Programs

  • Maple
    q:= p-> (q-> q(p) and q((p^64+1)/2))(isprime):
    select(q, [$3..20000])[];  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Select[Range[18000], PrimeQ[#] && PrimeQ[(#^64 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)
  • PARI
    isok(p) = (p>2) && isprime(p) && ispseudoprime((p^64 + 1)/2); \\ Michel Marcus, Feb 07 2021

A105318 Starting prime for the smallest prime Pythagorean sequence for n triangles.

Original entry on oeis.org

5, 3, 271, 169219, 356498179, 2500282512131, 20594058719087111, 2185103796349763249
Offset: 1

Views

Author

Lekraj Beedassy, Apr 26 2005

Keywords

Comments

Smallest prime p(0) such that the n-chain governed by recurrence p(i+1)=(p(i)^2 + 1)/2 are all primes. Equivalently, least prime p(0) that generates a sequence of n 2-prime triangles, where p(k) is the hypotenuse of the k-th triangle and the leg of the (k+1)-th triangle.
For n>2, the last digit of a(n) is 1 or 9. - Ya-Ping Lu, May 17 2025

Examples

			5 is a(1) because (5^2+1)/2 = 13 is prime, but (13^2+1)/2 = 85 is not.
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 258.

Crossrefs

Programs

  • Python
    from sympy import isprime, nextprime; m = lambda x: (x*x+1)//2; p = 2; D = {}
    while p < 2185103796349763249:
        p = nextprime(p); q = m(p); n = 1
        while isprime(q) and isprime(m(q)): n += 1; q = m(q)
        if n not in D: D.update({n: p})
    [print(k, end =', ') for key, k in sorted(D.items())] # Ya-Ping Lu, May 17 2025

Extensions

a(1) added by T. D. Noe, Jan 29 2011
Previous Showing 11-20 of 48 results. Next