cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 108 results. Next

A132269 a(n) = Product_{k>=0} (1 + floor(n/2^k)).

Original entry on oeis.org

1, 2, 6, 8, 30, 36, 56, 64, 270, 300, 396, 432, 728, 784, 960, 1024, 4590, 4860, 5700, 6000, 8316, 8712, 9936, 10368, 18200, 18928, 21168, 21952, 27840, 28800, 31744, 32768, 151470, 156060, 170100, 174960, 210900, 216600, 234000, 240000, 340956, 349272, 374616
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base 2 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
From Gary W. Adamson, Aug 25 2016: (Start)
Given the following production matrix M =
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 3, 0, 0, 0, ...
0, 4, 0, 0, 0, ...
0, 0, 5, 0, 0, ...
0, 0, 6, 0, 0, ...
0, 0, 0, 7, 0, ...
...
the sequence is the left-shifted vector as lim_{n->infinity} M^n. (End)

Examples

			a(10) = (1 + floor(10/2^0))*(1 + floor(10/2^1))*(1 + floor(10/2^2))*(1 + floor(10/2^3)) = 11*6*3*2 = 396;
a(17) = 4860 since 17 = 10001_2 and so a(17) = (1+10001_2)*(1+1000_2)*(1+100_2)*(1+10_2)*(1+1) = 18*9*5*3*2 = 4860.
		

Crossrefs

For formulas regarding a general parameter p (i.e., terms 1+floor(n/p^k)) see A132271.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Magma
    [1] cat [n le 1 select 2 else (1+n)*Self(Floor(n/2)): n in [1..50]]; // Vincenzo Librandi, Aug 26 2016
  • Maple
    f:= proc(n) option remember; (1+n)*procname(floor(n/2)) end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Aug 26 2016
  • Mathematica
    Table[Product[1 + Floor[2 n/2^k], {k, 2 n}], {n, 0, 42}] (* or *)
    Table[Function[w, Times @@ Map[1 + FromDigits[PadRight[w, #], 2] &, Range@ Length@ w]]@ IntegerDigits[n, 2], {n, 0, 42}] (* Michael De Vlieger, Aug 26 2016 *)

Formula

Recurrence: a(n)=(1+n)*a(floor(n/2)); a(2n)=(1+2n)*a(n); a(n*2^m) = (Product_{k=1..m} (1 + n*2^k))*a(n).
a(2^m-1) = 2^(m*(m+1)/2), a(2^m) = 2^(m*(m+1)/2)*Product_{k=0..m} (1 + 1/2^k), m>=1.
a(n) = A132270(2n) = (1+n)*A132270(n).
Asymptotic behavior: a(n) = O(n^((1+log_2(n))/2)); this follows from the inequalities below.
a(n) <= A098844(n)*Product_{k=0..floor(log_2(n))} (1 + 1/2^k).
a(n) >= A098844(n)/Product_{k=1..floor(log_2(n))} (1 - 1/2^k).
a(n) < c*n^((1+log_2(n))/2) = c*2^A000217(log_2(n)), where c = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... (see constant A081845).
a(n) > n^((1+log_2(n))/2) = 2^A000217(log_2(n)),
lim sup a(n)/A098844(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n)/A098844(n) = 1/Product_{k>=1} (1 - 1/2^k) = 1/0.288788095086602421..., for n->oo (see constant A048651).
lim inf a(n)/n^((1+log_2(n))/2) = 1, for n->oo.
lim sup a(n)/n^((1+log_2(n))/2) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n+1)/a(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... for n->oo (see constant A081845).
G.f. g(x) satisfies g(x) = (1+2x)*g(x^2) + 2*x^2*(1+x)*g'(x^2). - Robert Israel, Aug 26 2016

A132035 Decimal expansion of Product_{k>0} (1-1/7^k).

Original entry on oeis.org

8, 3, 6, 7, 9, 5, 4, 0, 7, 0, 8, 9, 0, 3, 7, 8, 7, 1, 0, 2, 6, 7, 2, 9, 7, 9, 8, 1, 4, 6, 1, 3, 6, 2, 4, 1, 3, 5, 2, 4, 3, 6, 4, 3, 5, 8, 7, 6, 7, 1, 6, 5, 1, 9, 9, 6, 4, 1, 1, 5, 1, 0, 1, 7, 7, 0, 0, 9, 1, 6, 0, 1, 2, 6, 5, 4, 2, 7, 6, 0, 5, 8, 7, 8, 7, 5, 5, 5, 4, 2, 8, 4, 9, 0, 5, 1, 2, 0, 2, 1, 7, 5, 3
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.8367954070890378710...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/7^k, {k, 1, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/7], 10, 100][[1]] (* Amiram Eldar, May 09 2023 *)
  • PARI
    prodinf(k=1, 1 - 1/(7^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*7^n)) = exp(-Sum_{n>0} A000203(n)/(n*7^n)).
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(7)) * exp(log(7)/24 - Pi^2/(6*log(7))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(7))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027875(n). (End)

A259147 Decimal expansion of phi(exp(-Pi/2)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

7, 4, 9, 3, 1, 1, 4, 7, 7, 8, 0, 0, 0, 0, 2, 7, 8, 7, 4, 2, 9, 6, 2, 5, 6, 5, 8, 7, 8, 3, 3, 8, 0, 3, 1, 1, 9, 0, 4, 0, 9, 2, 5, 2, 7, 9, 0, 1, 1, 7, 3, 9, 2, 8, 3, 1, 2, 0, 6, 7, 3, 1, 0, 1, 3, 1, 3, 5, 8, 8, 5, 3, 7, 5, 5, 1, 7, 4, 7, 2, 5, 8, 6, 1, 3, 4, 7, 5, 6, 3, 5, 7, 6, 5, 5, 8, 5, 8, 4, 0, 4, 6, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.74931147780000278742962565878338031190409252790117392831206731...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi/2]], 10, 105] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi/2)) = ((sqrt(2) - 1)^(1/3)*(4 + 3*sqrt(2))^(1/24) * exp(Pi/48) * Gamma(1/4))/(2^(5/6)*Pi^(3/4)).
phi(exp(-Pi/2)) = (sqrt(2)-1)^(1/4) * exp(Pi/48) * Gamma(1/4)/(2^(13/16)*Pi^(3/4)). - Vaclav Kotesovec, Jul 03 2017

A261584 Expansion of Product_{k>=1} (1 + 2*x^k)/(1 - 2*x^k).

Original entry on oeis.org

1, 4, 12, 36, 92, 228, 540, 1236, 2748, 6004, 12876, 27252, 57036, 118308, 243564, 498564, 1015484, 2060484, 4167804, 8409588, 16934748, 34049940, 68378220, 137185428, 275026476, 551052676, 1103618508, 2209525092, 4422484764, 8850120420, 17707920924
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 25 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1)), {k, 1, nmax}]], {x, 0, nmax}], x]
    (O[x]^30 - QPochhammer[-2, x]/(3 QPochhammer[2, x]))[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) = c * 2^n, where c = 1/(A048651 * A083864) = 2*Product_{j>=1} (2^j+1)/(2^j-1) = 16.5119758715565001310882816988645462530540032335764606912075051272567456...

A075271 a(0) = 1 and, for n >= 1, (BM)a(n) = 2*a(n-1), where BM is the BinomialMean transform.

Original entry on oeis.org

1, 3, 17, 211, 5793, 339491, 41326513, 10282961907, 5181436229441, 5258784071302723, 10717167529963833681, 43779339268428732008723, 358114286723184561034838497, 5862685570087914880854259126371, 192026370558313054275618817346778353
Offset: 0

Views

Author

John W. Layman, Sep 11 2002

Keywords

Comments

The BinomialMean transform BM is defined by (BM)a(n) = (M^n)a(0) where (M)a(n) is the mean (a(n) + a(n+1))/2, or, alternatively, by (BM)a(n) = (Sum_{k=0..n} binomial(n,k)*a(k))/(2^n).
The BinomialMean transform of this sequence is given in A075272.

Examples

			Given that a(0)=1 and a(1)=3. Then (BM)a(2) = (1 + 2*3 + a(2))/4 = 2a(1) = 6, hence a(2)=17.
		

Crossrefs

Programs

  • Maple
    iBM:= proc(p) proc(n) option remember; add(2^(k)*p(k)*(-1)^(n-k) *binomial(n, k), k=0..n) end end: a:= iBM(aa): aa:= n-> `if`(n=0, 1, 2*a(n-1)): seq(a(n), n=0..16);  # Alois P. Heinz, Sep 09 2008
  • Mathematica
    iBM[p_] := Module[{proc}, proc[n_] := proc[n] = Sum[2^k*p[k]*(-1)^(n-k) * Binomial[n, k], {k, 0, n}]; proc]; a = iBM[aa]; aa[n_] := If[n == 0, 1, 2*a[n-1]]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 08 2015, after Alois P. Heinz *)
    Table[Sum[QFactorial[k, 2] Binomial[n + 1, k]/2, {k, 0, n + 1}], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)

Formula

O.g.f. as a continued fraction: A(x) = 1/(1 + x - 2^2*x/(1 - 2*(2 - 1)^2*x/(1 + x - 2^4*x/(1 - 2*(2^2 - 1)^2*x/(1 + x - 2^6*x/(1 - 2*(2^3 - 1)^2*x/(1 + x - 2^8*x/(1 - 2*(2^4 - 1)^2*x/(1 + x - ... ))))))))). Cf. A075272. - Peter Bala, Nov 10 2017
a(n) ~ A048651 * 2^(n*(n+3)/2). - Vaclav Kotesovec, Jun 09 2025

Extensions

More terms from Alois P. Heinz, Sep 09 2008

A132268 Decimal expansion of Product_{k>0} (1-1/12^k).

Original entry on oeis.org

9, 0, 9, 7, 2, 6, 2, 6, 8, 9, 0, 5, 9, 9, 4, 8, 8, 8, 6, 3, 6, 3, 6, 2, 0, 4, 6, 9, 7, 7, 0, 8, 0, 2, 4, 9, 1, 2, 0, 7, 9, 1, 6, 9, 1, 9, 4, 1, 0, 1, 4, 2, 7, 4, 3, 2, 6, 1, 5, 4, 4, 4, 1, 2, 8, 6, 9, 0, 2, 4, 5, 7, 6, 6, 1, 9, 5, 4, 1, 6, 2, 0, 2, 6, 0, 0, 0, 5, 5, 3, 8, 8, 8, 8, 1, 0, 8, 5, 1, 4, 8, 3, 9, 7, 1, 9
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Examples

			0.9097262689059948886363620469770...
		

Crossrefs

Programs

  • Mathematica
    digits = 106; NProduct[1-1/12^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[1/12,1/12]] (* G. C. Greubel, Dec 05 2015 *)
  • PARI
    prodinf(k=1, (1-1/12^k)) \\ Michel Marcus, Dec 05 2015

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*12^n)) = exp(-Sum_{n>0} A000203(n)/(n*12^n)).
Equals (1/12; 1/12){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 05 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(12)) * exp(log(12)/24 - Pi^2/(6*log(12))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(12))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027880(n). (End)

A240736 Number of compositions of n having exactly one fixed point.

Original entry on oeis.org

1, 1, 1, 4, 7, 16, 29, 60, 120, 238, 479, 956, 1910, 3817, 7633, 15252, 30491, 60955, 121865, 243650, 487165, 974112, 1947851, 3895086, 7789153, 15576624, 31150481, 62296424, 124585395, 249158607, 498297297, 996562085, 1993071152, 3986055928, 7971971230
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Examples

			a(4) = 4: 13, 22, 112, 1111.
a(5) = 7: 14, 32, 131, 221, 1112, 1121, 11111.
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Column k=1 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 2))
        end:
    a:= n-> coeff(b(n, 1), x, 1):
    seq(a(n), n=1..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 2}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = A065442 * A048651 / 2 = 0.2319972162254452238942023675457837005318389885... - Vaclav Kotesovec, Sep 06 2014

A227682 G.f.: exp( Sum_{n>=1} x^n / (n*(1-x)^n * (1-x^n)) ).

Original entry on oeis.org

1, 1, 3, 7, 16, 35, 76, 162, 342, 715, 1484, 3060, 6278, 12824, 26102, 52969, 107224, 216601, 436798, 879584, 1769117, 3554726, 7136736, 14318524, 28711315, 57544864, 115290624, 230910993, 462362571, 925610398, 1852669016, 3707705019, 7419275371, 14844857959
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2013

Keywords

Comments

Number of compositions of n with k sorts of parts k where the sorts of parts are nondecreasing through the composition, see example. - Joerg Arndt, May 01 2014

Examples

			From _Joerg Arndt_, May 01 2014: (Start)
The a(5) = 35 compositions as described in the first comment are (here p:s stands for a part p of sort s)
01:  [ 1:0  1:0  1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:0  2:0  ]
03:  [ 1:0  1:0  1:0  2:1  ]
04:  [ 1:0  1:0  2:0  1:0  ]
05:  [ 1:0  1:0  3:0  ]
06:  [ 1:0  1:0  3:1  ]
07:  [ 1:0  1:0  3:2  ]
08:  [ 1:0  2:0  1:0  1:0  ]
09:  [ 1:0  2:0  2:0  ]
10:  [ 1:0  2:0  2:1  ]
11:  [ 1:0  2:1  2:1  ]
12:  [ 1:0  3:0  1:0  ]
13:  [ 1:0  4:0  ]
14:  [ 1:0  4:1  ]
15:  [ 1:0  4:2  ]
16:  [ 1:0  4:3  ]
17:  [ 2:0  1:0  1:0  1:0  ]
18:  [ 2:0  1:0  2:0  ]
19:  [ 2:0  1:0  2:1  ]
20:  [ 2:0  2:0  1:0  ]
21:  [ 2:0  3:0  ]
22:  [ 2:0  3:1  ]
23:  [ 2:0  3:2  ]
24:  [ 2:1  3:1  ]
25:  [ 2:1  3:2  ]
26:  [ 3:0  1:0  1:0  ]
27:  [ 3:0  2:0  ]
28:  [ 3:0  2:1  ]
29:  [ 3:1  2:1  ]
30:  [ 4:0  1:0  ]
31:  [ 5:0  ]
32:  [ 5:1  ]
33:  [ 5:2  ]
34:  [ 5:3  ]
35:  [ 5:4  ]
(End)
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[SeriesCoefficient[Exp[Sum[x^k / (k*(1-x)^k * (1-x^k)),{k,1,n}]],{x,0,n}], {n,1,40}]}] (* Vaclav Kotesovec, May 01 2014 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(m*(1-x)^m*(1-x^m +x*O(x^n))) )), n)}
    for(n=0, 50, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m*sumdiv(m, d, 1/(1-x +x*O(x^n))^d/d) )), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} x^n * Sum_{d|n} 1/(d*(1-x)^d) ).
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 35*x^5 + 76*x^6 + 162*x^7 +...
where
log(A(x)) = x/((1-x)*(1-x)) + x^2/(2*(1-x)^2*(1-x^2)) + x^3/(3*(1-x)^3*(1-x^3)) + x^4/(4*(1-x)^4*(1-x^4)) + x^5/(5*(1-x)^5*(1-x^5)) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 56*x^5/5 + 107*x^6/6 + 197*x^7/7 + 365*x^8/8 + 679*x^9/9 + 1280*x^10/10 +...
a(n) = A238350(n*(n+3)/2,n), a(n) is the number of compositions of n*(n+3)/2 with exactly n fixed points. - Alois P. Heinz, Apr 11 2014
a(n) ~ c * 2^n, where c = 1/(2*A048651) = 1.73137330972753180576... - Vaclav Kotesovec, May 01 2014
G.f.: Product {n >= 1} 1/(1 - x^n/(1 - x)). Row sums of A253829. - Peter Bala, Jan 20 2015

A322211 a(n) = coefficient of x^n*y^n in Product_{n>=1} 1/(1 - (x^n + y^n)).

Original entry on oeis.org

1, 2, 10, 38, 158, 602, 2382, 9142, 35492, 136936, 530404, 2053848, 7972272, 30977742, 120576112, 469915012, 1833813534, 7164469910, 28021000340, 109699469798, 429850240742, 1685728936622, 6615913739206, 25983523253950, 102115250446680, 401557335718522, 1579978592844064, 6219928993470190, 24498287876663618, 96535916978924934, 380568644820360668
Offset: 0

Views

Author

Paul D. Hanna, Nov 30 2018

Keywords

Comments

Number of subsets of partitions of 2n that have sum n. Olivier Gérard, May 07 2020

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 38*x^3 + 158*x^4 + 602*x^5 + 2382*x^6 + 9142*x^7 + 35492*x^8 + 136936*x^9 + 530404*x^10 + 2053848*x^11 + 7972272*x^12 + ...
RELATED SERIES.
The product P(x,y) = Product_{n>=1} 1/(1 - (x^n + y^n)) begins
P(x,y) = 1 + (x + y) + (2*x^2 + 2*x*y + 2*y^2) + (3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3) + (5*x^4 + 7*x^3*y + 10*x^2*y^2 + 7*x*y^3 + 5*y^4) + (7*x^5 + 12*x^4*y + 18*x^3*y^2 + 18*x^2*y^3 + 12*x*y^4 + 7*y^5) + (11*x^6 + 19*x^5*y + 34*x^4*y^2 + 38*x^3*y^3 + 34*x^2*y^4 + 19*x*y^5 + 11*y^6) + (15*x^7 + 30*x^6*y + 56*x^5*y^2 + 74*x^4*y^3 + 74*x^3*y^4 + 56*x^2*y^5 + 30*x*y^6 + 15*y^7) + (22*x^8 + 45*x^7*y + 94*x^6*y^2 + 133*x^5*y^3 + 158*x^4*y^4 + 133*x^3*y^5 + 94*x^2*y^6 + 45*x*y^7 + 22*y^8) + ...
in which this sequence equals the coefficients of x^n*y^n for n >= 0.
The logarithm of the g.f. begins
log( A(x) ) = 2*x + 16*x^2/2 + 62*x^3/3 + 272*x^4/4 + 922*x^5/5 + 3640*x^6/6 + 12966*x^7/7 + 49872*x^8/8 + 190340*x^9/9 + 745316*x^10/10 + 2928136*x^11/11 + 11602184*x^12/12 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; s = Series[Product[1/(1 - (x^k + y^k)), {k, 1, nmax}], {x, 0, nmax}, {y, 0, nmax}]; Flatten[{1, Table[Coefficient[s, x^n*y^n], {n, 1, nmax}]}] (* Vaclav Kotesovec, Dec 04 2018 *)
  • PARI
    {P = 1/prod(n=1,61, (1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
    {a(n) = polcoeff( polcoeff( P,n,x),n,y)}
    for(n=0,35, print1( a(n),", ") )

Formula

Main diagonal of square table A322210.
a(n) ~ c * 4^n / sqrt(Pi*n), where c = 1 / A048651 = 1 / Product_{k>=1} (1 - 1/2^k) = 3.46274661945506361153795734292443116454075790290443839... - Vaclav Kotesovec, Dec 23 2018

A132020 Decimal expansion of Product_{k>=0} (1 - 1/(2*4^k)).

Original entry on oeis.org

4, 1, 9, 4, 2, 2, 4, 4, 1, 7, 9, 5, 1, 0, 7, 5, 9, 7, 7, 0, 9, 9, 5, 6, 1, 0, 7, 7, 0, 2, 9, 7, 4, 2, 5, 2, 2, 3, 3, 9, 5, 3, 2, 3, 4, 3, 9, 2, 6, 6, 6, 7, 4, 9, 0, 8, 0, 4, 4, 9, 9, 1, 6, 6, 3, 1, 7, 7, 2, 0, 5, 0, 8, 7, 2, 7, 0, 9, 1, 9, 3, 9, 1, 0, 0, 2, 3, 2, 4, 5, 4, 7, 4, 2, 3, 8, 1, 9, 5, 5, 0, 2, 8, 5, 8
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Comments

This is the limiting probability that a large random symmetric binary matrix is nonsingular (cf. A086812, A048651). In other words, equals Lim_{n->oo} A086812(n)/A006125(n+1).- H. Tracy Hall, Sep 07 2024

Examples

			0.41942244179510759770995610770297425223395323439266674908044991663177...
		

Crossrefs

Programs

  • Maple
    evalf(1+sum((-1)^n*2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 23 2020
  • Mathematica
    RealDigits[ Product[1 - 1/(2*4^i), {i, 0, 175}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2, 1/4], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    prodinf(k=0,1-1.>>(2*k+1)) \\ Charles R Greathouse IV, Nov 16 2012

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_4(n))} floor(n/4^k)*4^k/n.
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^((1/2)*(1+floor(log_4(n)))*floor(log_4(n))).
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^A000217(floor(log_4(n))).
Equals (1/2)*exp(-Sum_{n>0} (4^(-n)*(Sum_{k|n} 1/(k*2^k)))).
Equals lim inf_{n->oo} A132028(n)/A132028(n+1).
Equals Product_{k>0} (1-1/(2^k+1)). - Robert G. Wilson v, May 25 2011
From Robert FERREOL, Feb 23 2020: (Start)
Equals Product_{k>0} (1 + 1/2^k)^(-1) = 2/A081845.
Equals 1 + Sum_{n>=1} (-1)^n*2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). (End)
From Peter Bala, Jan 15 2021: (Start)
Constant C = Sum_{n >= 0} 2^n/Product_{k = 1..n} (1 - 4^k).
Faster converging series:
2*C = (1/2)*Sum_{n >= 0} 2^(-n)/Product_{k = 1..n} (1 - 4^k);
(2^4)*C = 7*Sum_{n >= 0} 2^(-3*n)/Product_{k = 1..n} (1 - 4^k);
(2^9)*C = 7*31*Sum_{n >= 0} 2^(-5*n)/Product_{k = 1..n} (1 - 4^k), and so on.
Slower converging series:
C = -Sum_{n >= 0} 2^(3*n)/Product_{k = 1..n} (1 - 4^k);
7*C = Sum_{n >= 0} 2^(5*n)/Product_{k = 1..n} (1 - 4^k);
7*31*C = -Sum_{n >= 0} 2^(7*n)/Product_{k = 1..n} (1 - 4^k), and so on. (End)
Equals Product_{n>=0} (1 - 1/A004171(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Charles R Greathouse IV, Nov 16 2012
Previous Showing 31-40 of 108 results. Next