cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A048651 Decimal expansion of Product_{k >= 1} (1 - 1/2^k).

Original entry on oeis.org

2, 8, 8, 7, 8, 8, 0, 9, 5, 0, 8, 6, 6, 0, 2, 4, 2, 1, 2, 7, 8, 8, 9, 9, 7, 2, 1, 9, 2, 9, 2, 3, 0, 7, 8, 0, 0, 8, 8, 9, 1, 1, 9, 0, 4, 8, 4, 0, 6, 8, 5, 7, 8, 4, 1, 1, 4, 7, 4, 1, 0, 6, 6, 1, 8, 4, 9, 0, 2, 2, 4, 0, 9, 0, 6, 8, 4, 7, 0, 1, 2, 5, 7, 0, 2, 4, 2, 8, 4, 3, 1, 9, 3, 3, 4, 8, 0, 7, 8, 2
Offset: 0

Views

Author

Keywords

Comments

This is the limiting probability that a large random binary matrix is nonsingular (cf. A002884).
This constant is very close to 2^(13/24) * sqrt(Pi/log(2)) / exp(Pi^2/(6*log(2))) = 0.288788095086602421278899775042039398383022429351580356839... - Vaclav Kotesovec, Aug 21 2018
This constant is irrational (see Penn link). - Paolo Xausa, Dec 09 2024

Examples

			(1/2)*(3/4)*(7/8)*(15/16)*... = 0.288788095086602421278899721929230780088911904840685784114741...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 318, 354-361.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Product[1 - 1/2^i, {i, 100}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2], 10, 100][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    default(realprecision, 20080); x=prodinf(k=1, -1/2^k, 1); x*=10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b048651.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009

Formula

exp(-Sum_{k>0} sigma_1(k)/k*2^(-k)) = exp(-Sum_{k>0} A000203(k)/k*2^(-k)). - Hieronymus Fischer, Jul 28 2007
From Hieronymus Fischer, Aug 13 2007: (Start)
Equals lim inf Product_{k=0..floor(log_2(n))} floor(n/2^k)*2^k/n for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^(1/2*(1+floor(log_2(n)))*floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/n^(1+floor(log_2(n)))*2^A000217(floor(log_2(n))) for n->oo.
Equals lim inf A098844(n)/(n+1)^((1+log_2(n+1))/2) for n->oo.
Equals (1/2)*exp(-Sum_{n>0} 2^(-n)*Sum_{k|n} 1/(k*2^k)). (End)
Limit of A177510(n)/A000079(n-1) as n->infinity (conjecture). - Mats Granvik, Mar 27 2011
Product_{k >= 1} (1-1/2^k) = (1/2; 1/2){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 27 2015
exp(Sum_{n>=1}(1/n/(1 - 2^n))) (according to Mathematica). - Mats Granvik, Sep 07 2016
(Sum_{k>0} (4^k-1)/(Product_{i=1..k} ((4^i-1)*(2*4^i-1))))*2 = 2/7 + 2/(3*7*31) + 2/(3*7*15*31*127)+2/(3*7*15*31*63*127*511) + ... (conjecture). - Werner Schulte, Dec 22 2016
Equals Sum_{k=-oo..oo} (-1)^k/2^((3*k+1)*k/2) (by Euler's pentagonal number theorem). - Amiram Eldar, Aug 13 2020
From Peter Bala, Dec 15 2020: (Start)
Constant C = Sum_{n >= 0} (-1)^n/( Product_{k = 1..n} (2^k - 1) ). The above conjectural result by Schulte follows by adding terms of this series in pairs.
C = (1/2)*Sum_{n >= 0} (-1/2)^n/( Product_{k = 1..n} (2^k - 1) ).
C = (3/8)*Sum_{n >= 0} (-1/4)^n/( Product_{k = 1..n} (2^k - 1) ).
1/C = Sum_{n >= 0} 2^(n*(n-1)/2)/( Product_{k = 1..n} (2^k - 1) ).
C = 1 - Sum_{n >= 0} (1/2)^(n+1)*Product_{k = 1..n} (1 - 1/2^k).
This latter identity generalizes as:
C = Sum_{n >= 0} (1/4)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*C = 1 - Sum_{n >= 0} (1/8)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*C = 6 + Sum_{n >= 0} (1/16)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
3*7*15*C = 91 - Sum_{n >= 0} (1/32)^(n+1)*Product_{k = 1..n} (1 - 1/2^k),
and so on, where the sequence [1, 0, 1, 6, 91, ...] is A005327.
(End)
From Amiram Eldar, Feb 19 2022: (Start)
Equals sqrt(2*Pi/log(2)) * exp(log(2)/24 - Pi^2/(6*log(2))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(2))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A005329(n).
Equals exp(-A335764). (End)
Equals 1/A065446. - Hugo Pfoertner, Nov 23 2024

Extensions

Corrected by Hieronymus Fischer, Jul 28 2007

A083864 Decimal expansion of Product_{k>=0} (1 - 1/(2^k+1)).

Original entry on oeis.org

2, 0, 9, 7, 1, 1, 2, 2, 0, 8, 9, 7, 5, 5, 3, 7, 9, 8, 8, 5, 4, 9, 7, 8, 0, 5, 3, 8, 5, 1, 4, 8, 7, 1, 2, 6, 1, 1, 6, 9, 7, 6, 6, 1, 7, 1, 9, 6, 3, 3, 3, 3, 7, 4, 5, 4, 0, 2, 2, 4, 9, 5, 8, 3, 1, 5, 8, 8, 6, 0, 2, 5, 4, 3, 6, 3, 5, 4, 5, 9, 6, 9, 5, 5, 0, 1, 1, 6, 2, 2, 7, 3, 7, 1, 1, 9, 0, 9, 7, 7, 5, 1, 4, 2
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2003

Keywords

Comments

c/4 where c is the constant defined in A085011.

Examples

			0.2097112208975537988549780538514871...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[-1, 1/2], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    prod(k=0,1000,1-1./(2^k+1))
    
  • PARI
    prodinf(k=0, 1-1/(2^k+1)) \\ Michel Marcus, Feb 28 2020

Formula

Product_{k>=0} (1-1/(2^k+1)).
From Robert FERREOL, Feb 28 2020: (Start)
Equals Product_{k>=0} (1 + 1/2^k)^(-1) = 1/A081845.
Equals 1 + Sum_{k>=1} (-1)^k*2^(k*(k+1)/2)/((2-1)*(2^2-1)*...*(2^k-1)). (End)
From Peter Bala, Jan 16 2021: (Start)
Constant C = 2^(-1)*Sum_{n >= 0} (-1/2)^n/Product_{k = 1..n} (1 - 1/2^k).
C = (2^2/(3*5))*Sum_{n >= 0} (-1/8)^n/Product_{k = 1..n} (1 - 1/2^k).
C = (2^9/(3*5*9*17))*Sum_{n >= 0} (-1/32)^n/Product_{k = 1..n} (1 - 1/2^k).
C = (2^20/(3*5*9*17*33*65))*Sum_{n >= 0} (-1/128)^n/Product_{k = 1..n} (1 - 1/2^k) and so on. (End)

A265758 Expansion of Product_{k>=1} ((1 + k*x^k)/(1 - k*x^k)).

Original entry on oeis.org

1, 2, 6, 16, 38, 88, 200, 428, 902, 1874, 3780, 7504, 14732, 28368, 54052, 101960, 189750, 349996, 640218, 1159624, 2084952, 3722008, 6593560, 11606268, 20308188, 35312170, 61065636, 105060200, 179795936, 306244136, 519291476, 876554860, 1473504846
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 15 2015

Keywords

Comments

Convolution of A022629 and A006906.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/3), where
c = 28711548.45004804552683870974706458425598... if mod(n,3) = 0
c = 28711547.74098394497470795294574937283075... if mod(n,3) = 1
c = 28711547.58138731567204220029302329316039... if mod(n,3) = 2.

A303346 Expansion of Product_{n>=1} ((1 + 2*x^n)/(1 - 2*x^n))^(1/2).

Original entry on oeis.org

1, 2, 4, 10, 18, 38, 72, 142, 260, 510, 940, 1814, 3362, 6490, 12112, 23466, 44114, 85766, 162516, 317190, 604806, 1184682, 2271248, 4461514, 8591784, 16916490, 32696708, 64496130, 125037142, 247007142, 480077432, 949510526, 1849375796, 3661330398, 7144215452
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[Sqrt[-QPochhammer[-2, x] / (3*QPochhammer[2, x])], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+2*x^k)/(1-2*x^k))^(1/2)))

Formula

a(n) ~ 2^n / sqrt(c*Pi*n), where c = A048651 * A083864 = 1/2 * Product_{j>=1} (2^j-1)/(2^j+1) = 0.06056210400129025123042464659093375290492912341... - Vaclav Kotesovec, Apr 22 2018

A264686 Expansion of Product_{k>=1} (1 + 2*x^k)/(1 - x^k).

Original entry on oeis.org

1, 3, 6, 15, 27, 51, 93, 159, 264, 432, 696, 1086, 1683, 2553, 3837, 5700, 8367, 12147, 17505, 24972, 35361, 49728, 69402, 96243, 132657, 181782, 247692, 335838, 453042, 608289, 813102, 1082256, 1434519, 1894215, 2491644, 3265869, 4265973, 5553771, 7207167
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 21 2015

Keywords

Comments

Convolution of A000041 and A032302.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 2*b(n-i, i-1))))
        end:
    a:= n-> add(b(i$2)*combinat[numbpart](n-i), i=0..n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 22 2017
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + 2*x^k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    { my(n=40); Vec(prod(k=1, n, 3/(1-x^k) - 2 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(3)*n), where c = 2*Pi^2/3 + log(2)^2 + 2*polylog(2, -1/2) = 6.163360867463814765670634381079217086937812673723341... . - Vaclav Kotesovec, Jan 04 2016

A261563 Expansion of Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1744, 4892, 13248, 34868, 89296, 223660, 548928, 1323060, 3137520, 7332332, 16907584, 38517444, 86777328, 193523404, 427562816, 936555044, 2035286576, 4390850268, 9409096576, 20037827876, 42429318480, 89369282460, 187325508288
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1))^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, (2^d - (-2)^d) * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = 2 * Product_{j>=1} ((1 + 1/2^j)/(1 - 1/2^j))^(j+1) = 1021.5383556752320172813996404366861329314041364322798995039038143325883...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} (2^d - (-2)^d) * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A303391 Expansion of Product_{k>=1} (1 + 4*x^k)/(1 - 4*x^k).

Original entry on oeis.org

1, 8, 40, 200, 872, 3720, 15400, 62920, 254440, 1024648, 4112680, 16483400, 66000360, 264150920, 1056903080, 4228272200, 16914393832, 67660396040, 270647139240, 1082600410440, 4330424811880, 17321748357640, 69287088965800, 277148557003720, 1108594618342760
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 50: # for a(0)..a(N)
    G:= mul((1+4*x^k)/(1-4*x^k),k=1..N):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 13 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+4*x^k)/(1-4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = QPochhammer[-1, 1/4] / QPochhammer[1/4] = 3.9385207073365388638943873939345313401323799...

A264685 Expansion of Product_{k>=1} (1 + x^k)/(1 - 2*x^k).

Original entry on oeis.org

1, 3, 9, 24, 60, 141, 324, 717, 1560, 3330, 7020, 14622, 30225, 61998, 126522, 257007, 520326, 1050396, 2116116, 4255584, 8547330, 17149350, 34382295, 68889840, 137969466, 276220962, 552865365, 1106356314, 2213644548, 4428657402, 8859340926, 17721640698
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)/(1 - 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^n, where c = A079555 / A048651 = Product_{k>=1} (2^k+1)/(2^k-1) = 8.25598793577825006554414084943227312652...

A303390 Expansion of Product_{k>=1} (1 + 3*x^k)/(1 - 3*x^k).

Original entry on oeis.org

1, 6, 24, 96, 330, 1104, 3552, 11184, 34584, 105990, 322224, 975264, 2942016, 8857680, 26631312, 80005632, 240219114, 721036320, 2163789816, 6492625152, 19480105392, 58444390176, 175340344416, 526034008752, 1578124753152, 4734415061142, 14203316252400
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+3*x^k)/(1-3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = QPochhammer[-1, 1/3] / QPochhammer[1/3] = 5.5877920355220979147599292926505407983327527...

A303397 Expansion of Product_{k>=1} (1 - 2*x^k)/(1 + 2*x^k).

Original entry on oeis.org

1, -4, 4, -4, 20, -36, 52, -116, 244, -500, 964, -1876, 3876, -7780, 15332, -30628, 61684, -123460, 246036, -491988, 985492, -1971284, 3939556, -7878068, 15762692, -31527428, 63041220, -126078916, 252185044, -504375460, 1008698036, -2017385268, 4034873268
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2018

Keywords

Crossrefs

Expansion of Product_{k>=1} (1 - b*x^k)/(1 + b*x^k): A002448 (b=1), this sequence (b=2), A303398 (b=3).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - 2*x^k)/(1 + 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-2*x^k)/(1+2*x^k)))

Formula

a(n) ~ c * (-2)^n, where c = QPochhammer[-1, -1/2]/QPochhammer[-1/2] = 0.93943604828296530723602398257349307281... - Vaclav Kotesovec, Apr 25 2018
Showing 1-10 of 13 results. Next