cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 108 results. Next

A360909 Multiplicative with a(p^e) = 3*e + 2.

Original entry on oeis.org

1, 5, 5, 8, 5, 25, 5, 11, 8, 25, 5, 40, 5, 25, 25, 14, 5, 40, 5, 40, 25, 25, 5, 55, 8, 25, 11, 40, 5, 125, 5, 17, 25, 25, 25, 64, 5, 25, 25, 55, 5, 125, 5, 40, 40, 25, 5, 70, 8, 40, 25, 40, 5, 55, 25, 55, 25, 25, 5, 200, 5, 25, 40, 20, 25, 125, 5, 40, 25, 125
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 25 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), A360997 (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), this sequence (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    a[n_] := Times @@ ((3*Last[#] + 2) & /@ FactorInteger[n]); a[1] = 1; Array[a, 100] (* Amiram Eldar, Feb 25 2023 *)
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+3*X-X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 3/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 7/p^(2*s) + 11/p^(3*s) - 6/p^(4*s) + 1/p^(5*s)), (with a product that converges for s=1).
Sum_{k=1..n} a(k) ~ c * n * log(n)^4 / 24, where c = Product_{primes p} (1 - 7/p^2 + 11/p^3 - 6/p^4 + 1/p^5) = 0.091414252314317101861531055690354339957600046..., more precise (but very complicated) asymptotics can be obtained (in Mathematica notation) as Residue[Zeta[s]^5 * f[s] * n^s / s, {s, 1}], where f[s] = Product_{primes p} (1 - 7/p^(2*s) + 11/p^(3*s) - 6/p^(4*s) + 1/p^(5*s)).

A360997 Multiplicative with a(p^e) = e + 3.

Original entry on oeis.org

1, 4, 4, 5, 4, 16, 4, 6, 5, 16, 4, 20, 4, 16, 16, 7, 4, 20, 4, 20, 16, 16, 4, 24, 5, 16, 6, 20, 4, 64, 4, 8, 16, 16, 16, 25, 4, 16, 16, 24, 4, 64, 4, 20, 20, 16, 4, 28, 5, 20, 16, 20, 4, 24, 16, 24, 16, 16, 4, 80, 4, 16, 20, 9, 16, 64, 4, 20, 16, 64, 4, 30, 4, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A361264(n)).
a(n) = A074816(n)*A007426(n)/A007425(n). (End)

A059908 a(n) = |{m : multiplicative order of n mod m = 3}|.

Original entry on oeis.org

0, 1, 2, 4, 3, 2, 8, 2, 12, 5, 12, 2, 12, 2, 4, 20, 5, 6, 10, 2, 6, 14, 12, 2, 40, 9, 4, 6, 18, 10, 16, 6, 6, 8, 12, 12, 39, 2, 12, 8, 8, 6, 16, 6, 18, 26, 12, 6, 50, 3, 18, 8, 18, 2, 32, 12, 8, 20, 4, 6, 60, 2, 12, 26, 21, 4, 64, 10, 6, 8, 8, 6, 20, 14, 4, 12, 6, 4, 64, 2, 70, 7, 12, 6, 24
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{7}| = 1, a(3) = |{13,26}| = 2, a(4) = |{7,9,21,63}| = 4, a(5) = |{31,62,124}| = 3, a(6) = |{43,215}| = 2, a(7) = |{9,18,19,38,57,114,171,342}| = 8,...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^3-1]-DivisorSigma[0,n-1],{n,90}] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^3-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^3-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A061701 Smallest number m such that GCD of d(m^2) and d(m) is 2n+1 where d(m) is the number of divisors of m.

Original entry on oeis.org

1, 12, 4608, 1728, 1260, 509607936, 2985984, 144, 56358560858112, 5159780352, 302400, 6232805962420322304, 207360000, 887040, 201226394483583074212773888, 15407021574586368, 248832, 2286144000, 26623333280885243904, 522547200, 8430527379596857675529996470321152
Offset: 0

Views

Author

Labos Elemer, Jun 18 2001

Keywords

Comments

a(n) exists for every n. In other words, every positive odd integer k is equal to the GCD of d(m^2) and d(m) for some m. To see this, let m = 2^(k^2 - 1) * 3^((k-1)/2). Then d(m) = k^2 * (k+1)/2 and d(m^2) = (2 k^2 - 1) * k. Both of these are divisible by k and (8k-4) d(m) - (2k+1) d(m^2) = k, so the GCD is k. - Dean Hickerson, Jun 23 2001
All the terms are in A025487 because A061680(m) = gcd(d(m^2), d(m)) depends only on the prime signature of m. - Amiram Eldar, Nov 26 2023

Examples

			For n = 7, GCD[d(20736),d(144)] = GCD[45,15] = 15 = 2*7+1.
		

Crossrefs

Formula

a(n) = Min[m : GCD[d(m^2), d(m)] = 2n+1].

Extensions

More terms from David Wasserman, Jun 20 2002
a(12)-a(13) corrected and a(17)-a(20) added by Amiram Eldar, Nov 26 2023

A117677 a(n) = number of divisors of n^2 (excluding 1 and n^2).

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 5, 3, 7, 1, 13, 1, 7, 7, 7, 1, 13, 1, 13, 7, 7, 1, 19, 3, 7, 5, 13, 1, 25, 1, 9, 7, 7, 7, 23, 1, 7, 7, 19, 1, 25, 1, 13, 13, 7, 1, 25, 3, 13, 7, 13, 1, 19, 7, 19, 7, 7, 1, 43, 1, 7, 13, 11, 7, 25, 1, 13, 7, 25, 1, 33, 1, 7, 13, 13, 7, 25, 1, 25, 7, 7, 1, 43, 7, 7, 7, 19, 1, 43, 7
Offset: 1

Views

Author

Mark Taggart (mt2612f(AT)aol.com), Apr 12 2006

Keywords

Crossrefs

Equals A048691(n) - 2 for n>1. Cf. A117679, A117010, A070824.

Programs

  • Mathematica
    Join[{0},DivisorSigma[0,Range[2,100]^2]-2] (* Harvey P. Dale, Oct 17 2016 *)

Formula

a(n) = A070824(n^2). - Ray Chandler, Nov 08 2018

A166721 Squares for which no smaller square has the same number of divisors.

Original entry on oeis.org

1, 4, 16, 36, 64, 144, 576, 900, 1024, 1296, 3600, 4096, 5184, 9216, 14400, 32400, 36864, 44100, 46656, 65536, 82944, 129600, 176400, 230400, 262144, 331776, 589824, 705600, 746496, 810000, 921600, 1166400, 1587600, 2073600, 2359296, 2822400, 2985984, 3240000
Offset: 1

Views

Author

Alexander Isaev (i2357(AT)mail.ru), Oct 20 2009

Keywords

Comments

From Jon E. Schoenfield, Mar 03 2018: (Start)
Numbers k^2 such there is no positive m < k such that A000005(m^2) = A000005(k^2).
Square terms in A007416. (End)

Examples

			The positive squares begin 1, 4, 9, 16, 25, 36, 49, 64, ..., and their corresponding numbers of divisors are 1, 3, 3, 5, 3, 9, 3, 7, ...; thus, a(1)=1, a(2)=4, 9 is not a term (it has the same number of divisors as does 4; the same is true of 25, 49, etc.), a(3)=16, a(4)=36, a(5)=64, ... - _Jon E. Schoenfield_, Mar 03 2018
		

Crossrefs

Programs

  • Mathematica
     Sort[Module[{nn=2000,tbl},tbl=Table[{n^2,DivisorSigma[0,n^2]},{n,nn}];Table[ SelectFirst[ tbl,#[[2]]==k&],{k,nn}]][[All,1]]/."NotFound"->Nothing] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    lista(nn) = {v = []; for (n=1, nn, d = numdiv(n^2); if (! vecsearch(v, d), print1(n^2, ", "); v = Set(concat(v, d))););} \\ Michel Marcus, Mar 04 2018

Extensions

Proper definition and substantial editing by Jon E. Schoenfield, Mar 03 2018

A319132 a(n) = Sum_{d|n} Sum_{j|d} mu(j)^2*j, where mu = Möbius function (A008683).

Original entry on oeis.org

1, 4, 5, 7, 7, 20, 9, 10, 9, 28, 13, 35, 15, 36, 35, 13, 19, 36, 21, 49, 45, 52, 25, 50, 13, 60, 13, 63, 31, 140, 33, 16, 65, 76, 63, 63, 39, 84, 75, 70, 43, 180, 45, 91, 63, 100, 49, 65, 17, 52, 95, 105, 55, 52, 91, 90, 105, 124, 61, 245, 63, 132, 81, 19, 105, 260, 69, 133, 125, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Inverse Möbius transform of A048250.

Crossrefs

Programs

  • Magma
    [&+[&+[MoebiusMu(j)^2*j:j in Divisors(d)]:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
    
  • Magma
    [&+[MoebiusMu(d)^2*d*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
  • Maple
    with(numtheory): seq(add(mobius(d)^2*d*tau(n/d), d in divisors(n)), n=1..70); # Ridouane Oudra, Nov 13 2019
  • Mathematica
    Table[Sum[Sum[MoebiusMu[j]^2 j, {j, Divisors[d]}], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, # &, SquareFreeQ[#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(DivisorSum[k, # &, SquareFreeQ[#] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p + 1)*e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2*d*numdiv(n/d)); \\ Michel Marcus, Nov 13 2019; corrected Jun 13 2022
    

Formula

G.f.: Sum_{k>=1} A048250(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(A048250(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(p^k) = (p + 1)*k + 1, where p is a prime.
a(n) = Sum_{d|n} mu(d)^2*d*tau(n/d). - Ridouane Oudra, Nov 13 2019
Multiplicative with a(p^e) = (p+1)*e+1. - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 = 0.822467... (A072691). - Amiram Eldar, Nov 13 2022
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2*s-2). - Amiram Eldar, Jan 03 2023

A348455 Irregular triangle read by rows: T(n,k) (n >= 1, 1 <= k <= number of divisors of n^2) is the number of ways to tile an n X n chessboard with rook-connected polyominoes of area d_k, where d_k is the k-th divisor of n^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 10, 1, 1, 70, 117, 36, 1, 1, 4006, 1, 1, 6728, 80092, 178939, 451206, 442791, 264500, 80518, 1, 1, 158753814, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2021

Keywords

Comments

This is an essentially identical triangle to A348453, except that the data in each row has effectively been reversed. Rather than copying everything here, please refer to A348453 for further information.

Examples

			Triangle begins:
1,
1, 2, 1,
1, 10, 1,
1, 70, 117, 36, 1,
1, 4006, 1,
1, 6728, 80092, 178939, 451206, 442791, 264500, 80518, 1,
1, 158753814, 1,
1, ?, ?, 187497290034, ?, 7157114189, 1,
...
		

Crossrefs

Cf. A048691 (row lengths).

A059909 a(n) = |{m : multiplicative order of n mod m = 4}|.

Original entry on oeis.org

0, 2, 6, 4, 12, 4, 26, 18, 14, 6, 24, 12, 64, 8, 16, 8, 66, 20, 36, 8, 64, 24, 76, 6, 28, 12, 64, 24, 48, 12, 100, 40, 50, 48, 36, 8, 96, 40, 28, 8, 104, 12, 208, 36, 24, 36, 200, 18, 48, 36, 36, 24, 128, 8, 152, 16, 172, 24, 48, 12, 48, 36, 56, 72, 40, 8, 128, 56, 48, 40
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Examples

			a(2) = |{5, 15}| = 2, a(3) = |{5, 10, 16, 20, 40, 80}| = 6, a(4) = |{17, 51, 85, 255}| = 4, a(5) = |{13, 16, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624}| = 12, ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,n^4-1]-DivisorSigma[0,n^2-1],{n,70}] (* Harvey P. Dale, Nov 30 2011 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^4-1) - numdiv(n^2-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^4-1)-tau(n^2-1), where tau(n) = number of divisors of n A000005. More generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.

A059910 a(n) = |{m : multiplicative order of n mod m = 5}|.

Original entry on oeis.org

0, 1, 4, 6, 9, 4, 4, 6, 20, 9, 8, 2, 6, 6, 12, 44, 5, 6, 18, 14, 12, 4, 4, 2, 56, 13, 20, 4, 6, 2, 40, 6, 18, 12, 12, 44, 63, 6, 28, 4, 16, 14, 8, 2, 18, 12, 28, 14, 70, 3, 42, 12, 42, 6, 24, 8, 56, 44, 60, 6, 60, 2, 4, 90, 21, 20, 24, 2, 18, 60, 88, 6, 12, 2, 28, 26, 6, 28, 8, 14, 170
Offset: 1

Views

Author

Vladeta Jovovic, Feb 08 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m) = 1, is the smallest natural number d for which a^d = 1 (mod m).

Crossrefs

Programs

  • Mathematica
    a[n_] := Subtract @@ DivisorSigma[0, {n^5-1, n-1}]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^5-1) - numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^5-1)-tau(n-1), where tau(n) = number of divisors of n A000005. Generally, if b(n, r) = |{m : multiplicative order of n mod m = r}| then b(n, r) = Sum_{d|r} mu(d)*tau(n^(r/d)-1), where mu(n) = Moebius function A008683.
Previous Showing 51-60 of 108 results. Next