cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 108 results. Next

A061680 a(n) = gcd(d(n^2), d(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jun 18 2001

Keywords

Examples

			This GCD can only be odd since d(n^2) is odd.
For n = 4608: a(4608) = gcd(d(21233664), d(4608)) = gcd(95, 30) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[DivisorSigma[0,n],DivisorSigma[0,n^2]],{n,110}] (* Harvey P. Dale, Sep 03 2023 *)
  • PARI
    a(n) = gcd(numdiv(n^2), numdiv(n)); \\ Harry J. Smith, Jul 26 2009
    
  • PARI
    a(n) = {my(e = factor(n)[,2]); gcd(vecprod(apply(x -> 2*x+1, e)), vecprod(apply(x -> x+1, e)));} \\ Amiram Eldar, Dec 02 2023

Formula

a(n) = gcd(A000005(A000290(n)), A000005(n)) = gcd(A048691(n), A000005(n)).

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Jul 26 2009

A063774 Numbers k such that the number of divisors of k^2 is a square.

Original entry on oeis.org

1, 6, 10, 14, 15, 16, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1

Views

Author

Jason Earls, Aug 15 2001

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 35, 326, 3275, 33090, 332435, 3327555, 33283964, 332868092, 3328794682, ... . Apparently, the asymptotic density of this sequence exists and equals 0.3328... . - Amiram Eldar, Nov 28 2023

Examples

			n=2: a(2) = 6 because the number of divisors of 6^2 is 9, a square.
		

Crossrefs

Subsequences: A030229, A238748.

Programs

  • Mathematica
    Select[Range[200],IntegerQ[Sqrt[DivisorSigma[0,#^2]]]&] (* Harvey P. Dale, Jun 06 2012 *)
  • PARI
    j=[]; for(n=1,500,a=numdiv(n^2); if(issquare(a),j=concat(j,n))); j
    
  • PARI
    n=0; for (m=1, 10^9, if(issquare(numdiv(m^2)), write("b063774.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Aug 30 2009
    
  • PARI
    is(n)=my(f=factor(n)[,2]); issquare(prod(i=1,#f,2*f[i]+1)) \\ Charles R Greathouse IV, Sep 18 2015

Formula

{n: A048691(n) in A000290}. - R. J. Mathar, Aug 09 2012

A086165 a(n) = |{ (x,y,z) | x < y < z and lcm(x,y,z) = n}|.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 0, 3, 1, 4, 0, 15, 0, 4, 4, 6, 0, 15, 0, 15, 4, 4, 0, 33, 1, 4, 3, 15, 0, 44, 0, 10, 4, 4, 4, 48, 0, 4, 4, 33, 0, 44, 0, 15, 15, 4, 0, 58, 1, 15, 4, 15, 0, 33, 4, 33, 4, 4, 0, 133, 0, 4, 15, 15, 4, 44, 0, 15, 4, 44, 0, 100, 0, 4, 15, 15, 4, 44, 0, 58, 6, 4, 0, 133, 4, 4, 4, 33, 0
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003

Keywords

Crossrefs

Programs

  • Maple
    for n from 1 to 100 do a[n] := 0:for x from 1 to n do for y from x+1 to n do for z from y+1 to n do if(lcm(x,y,z)=n) then a[n] := a[n]+1:fi:od:od:od:od:seq(a[j],j=1..200); # Sascha Kurz, Sep 22 2003
  • Mathematica
    f1[p_, e_] := (e+1)^3 - e^3; f2[p_, e_] := 2*e + 1; a[1] = 0; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n]) - 3 * Times @@ f2 @@@f + 2) / 6; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    A048691(n) = numdiv(n^2);
    A070919(n) = sumdiv(n, d, (numdiv(d)^3)*moebius(n/d));
    A086165(n) = ((A070919(n)-3*A048691(n)+2)/6); \\ Antti Karttunen, May 19 2017, after Jovovic's formula
    
  • PARI
    a(n) = {my(e = factor(n)[, 2]); (vecprod(apply(x->(x+1)^3-x^3, e)) - 3*vecprod(apply(x->2*x+1, e)) + 2) / 6;} \\ Amiram Eldar, Sep 03 2023

Formula

a(n) = (A070919(n) - 3*A048691(n) + 2)/6. - Vladeta Jovovic, Dec 01 2004
a(n) = A086222(n) - A048691(n). - Ridouane Oudra, Aug 14 2025

Extensions

More terms from Sascha Kurz, Sep 22 2003

A093616 a(n) is the smallest k such that k*n has exactly as many divisors as n^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 8, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 8, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 06 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[DivisorSigma[0, k*n] == DivisorSigma[0, n^2], Return[k]]]; Array[a, 72] (* Jean-François Alcover, Aug 14 2014 *)
  • PARI
    a(n) = {my(k = 1, d = numdiv(n^2)); while(numdiv(k*n) != d, k++); k;} \\ Amiram Eldar, Apr 15 2024

Formula

A000005(a(n)*n) = A000005(n^2) and A000005(m*n) <> A000005(n^2) for m < a(n).
a(A093617(n)) < n, a(A093618(n)) = n.

A093617 Numbers m such that there exists a number k less than m with k*m and m^2 having an equal number of divisors.

Original entry on oeis.org

18, 50, 75, 90, 98, 108, 126, 144, 147, 150, 198, 234, 242, 245, 294, 300, 306, 324, 338, 342, 350, 363, 384, 400, 414, 450, 490, 500, 507, 522, 525, 540, 550, 558, 578, 588, 600, 605, 630, 640, 648, 650, 666, 720, 722, 726, 735, 738, 756, 774, 784, 825
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 06 2004

Keywords

Comments

From Amiram Eldar, Apr 15 2024: (Start)
All the terms are nonsquarefree numbers (A013929).
The number k is of the form j^2*A007913(m).
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 0, 5, 64, 678, 6954, 69867, 699511, 6996322, 69962916, 699616048, ... . Apparently, the asymptotic density of this sequence exists and equals 0.06996... . (End)

Crossrefs

Programs

  • Mathematica
    A093616[n_] := For[k = 1, True, k++, If[DivisorSigma[0, k*n] == DivisorSigma[0, n^2], Return[k]]]; Select[Range[1000], A093616[#] < # &] (* Jean-François Alcover, Aug 14 2014 *)
    f[p_, e_] := p^(e + Mod[e, 2]); q[n_] := Module[{fct = FactorInteger[n], d, m, k = 1}, d = Times @@ ((2*# + 1) & /@ fct[[;; , 2]]); s = Times @@ f @@@ fct; m = Sqrt[n^2/s]; While[k < m && DivisorSigma[0, k^2*s] != d, k++]; k < m]; Select[Range[1000], q] (* Amiram Eldar, Apr 15 2024 *)
  • PARI
    is(n) = {my(f = factor(n), d = prod(i = 1, #f~, 2*f[i, 2] + 1), s = prod(i = 1, #f~, f[i, 1]^(f[i, 2] + f[i, 2]%2)), m = sqrtint(n^2/s), k = 1); while(k < m && numdiv(k^2 * s) != d, k++); k < m;} \\ Amiram Eldar, Apr 15 2024

Formula

A093616(a(n)) < n.

A093618 Numbers m such that for all k less than m the number of divisors of k*m and m^2 are different.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 06 2004

Keywords

Crossrefs

Complement of A093617.

Programs

  • Mathematica
    A093616[n_] := For[k = 1, True, k++, If[DivisorSigma[0, k*n] == DivisorSigma[0, n^2], Return[k]]]; Select[Range[100], A093616[#] == # &] (* Jean-François Alcover, Aug 14 2014 *)
  • PARI
    is(n) = {my(k = 1, d = numdiv(n^2)); while(k < n && numdiv(k*n) != d, k++); k == n;} \\ Amiram Eldar, Apr 15 2024

Formula

A093616(a(n)) = n.

Extensions

Corrected by Franklin T. Adams-Watters, Dec 19 2006

A166722 a(n) is the number of divisors of A166721(n).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 21, 27, 11, 25, 45, 13, 35, 33, 63, 75, 39, 81, 49, 17, 55, 105, 135, 99, 19, 65, 51, 189, 77, 125, 117, 147, 225, 165, 57, 243, 91, 175, 23, 85, 315, 195, 297, 153, 231, 95, 405, 245, 69, 375, 351, 119, 275, 441, 171, 121, 273, 567, 495, 255, 525
Offset: 1

Views

Author

Alexander Isaev (i2357(AT)mail.ru), Oct 20 2009

Keywords

Comments

This is a permutation of the odd numbers A005408. - Alois P. Heinz, Mar 04 2018

Examples

			a(8) = A000005(A166721(8)) = A000005(900) = A000005(2^2 * 3^2 * 5^2) = (2+1)*(2+1)*(2+1) = 27.
		

Crossrefs

Formula

a(n) = A000005(A166721(n)).

Extensions

Proper definition (and removal of obscure Comments entries) by Jon E. Schoenfield, Mar 03 2018

A182139 Inverse Moebius transform of A061142.

Original entry on oeis.org

1, 3, 3, 7, 3, 9, 3, 15, 7, 9, 3, 21, 3, 9, 9, 31, 3, 21, 3, 21, 9, 9, 3, 45, 7, 9, 15, 21, 3, 27, 3, 63, 9, 9, 9, 49, 3, 9, 9, 45, 3, 27, 3, 21, 21, 9, 3, 93, 7, 21, 9, 21, 3, 45, 9, 45, 9, 9, 3, 63, 3, 9, 21, 127, 9, 27, 3, 21, 9, 27, 3, 105, 3, 9, 21, 21, 9
Offset: 1

Views

Author

Enrique Pérez Herrero, Apr 14 2012

Keywords

Comments

a(n) is multiplicative with a(p^e) = -1 + 2^(e+1).
If s is squarefree then a(s) = A048691(s).
More generally: Let a_q(n) be multiplicative with a_q(p^e) = (q^(e+1)-1)/ (q-1) for prime p, e >= 0 and some fixed integer q. Then a_q(n) is the inverse Moebius transform of the completely multiplicative sequence b_q(n) = q^bigomega(n) with b_q(p) = q and b_q(1) = 1. For q = 1 see a_q(n) = A000005(n) and b_q(n) = A000012(n), for q = 0 see a_q(n) = A000012(n) and b_q(n) = A000007(n) with offset 1, and for q = -1 see a_q(n) = A010052(n) with offset 1 and b_q(n) = A008836(n). - Werner Schulte, Feb 20 2019

Examples

			a(12) = a(2^2 * 3^1) = (-1 + 2^(2+1)) * (-1 + 2^(1+1)) = 7 * 3 = 21; or, using the divisors set {1,2,3,4,6,12}: 2^0 + 2^1 + 2^1 + 2^2 + 2^2 + 2^3 = 21.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := DivisorSum[n, 2^PrimeOmega[#]&]; Table[t[n], {n,100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1 - X)/(1 - 2*X))[n], ", ")) \\ Vaclav Kotesovec, Mar 14 2023

Formula

a(n) = Sum_{d|n} 2^Omega(d) = Sum_{d|n} 2^A001222(d) = Sum_{d|n} A061142(d).
Dirichlet g.f.: zeta(s)^3 * Product_{p prime} 1/(1 - 1/(p^s - 1)^2).

A276553 Numbers n such that n^2 and (n + 1)^2 have the same number of divisors.

Original entry on oeis.org

2, 14, 15, 21, 33, 34, 38, 44, 57, 75, 81, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 272, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 405, 429, 434, 445
Offset: 1

Views

Author

K. D. Bajpai, Apr 10 2017

Keywords

Comments

Except for a(1), all the terms are composite.

Examples

			We see that 14^2 = 196, the divisors of which are 1, 2, 4, 7, 14, 28, 49, 98, 196, and there are nine of them. And we see that 15^2 = 225, the divisors of which are 1, 3, 5, 9, 15, 25, 45, 75, 225, and there are nine of them. Both 14^2 and 15^2 have the same number of divisors, hence 14 is in the sequence.
And we see that 16^2 = 256, the divisors of which are the powers of 2 from 2^0 to 2^8, that's nine divisors. Both 15^2 and 16^2 have the same number of divisors, hence 15 is also in the sequence.
But 16 is not in the sequence, since 17 is prime and 17^2 consequently only has three divisors.
		

Crossrefs

Cf. A052213 (a subsequence).
Positions of zeros in A284570.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    T:= map(t -> numtheory:-tau(t^2), [$1..N+1]):
    select(t -> T[t]=T[t+1], [$1..N]); # Robert Israel, Apr 10 2017
  • Mathematica
    Select[Range[1000], DivisorSigma[0, #^2] == DivisorSigma[0, (# + 1)^2] &]
  • PARI
    k=[]; for(n=1, 1000, a=numdiv(n^2); b=numdiv((n+1)^2); if(a==b, k=concat(k, n))); k
    
  • Python
    from sympy.ntheory import divisor_count
    print([n for n in range(1, 501) if divisor_count(n**2) == divisor_count((n + 1)**2)]) # Indranil Ghosh, Apr 10 2017
    (Scheme, with Antti Karttunen's IntSeq-library) (define A276553 (ZERO-POS 1 1 A284570)) ;; Antti Karttunen, Apr 15 2017

A283262 Numbers m such that tau(m^2) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Jaroslav Krizek, Mar 08 2017

Keywords

Comments

tau(m) is the number of positive divisors of m (A000005).
Numbers m such that A000005(A000290(m)) = A048691(m) is a prime.
Union of A000040 (primes) and A051676.
Supersequence of A055638 (sigma(m^2) is prime).
Subsequence of A000961 (powers of primes).
Prime powers p^e with 2e+1 prime (e >= 1).
See A061285(m) = the smallest number k such that tau(k^2) = m-th prime.

Examples

			tau(4^2) = tau(16) = 5 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] | IsPrime(NumberOfDivisors(n^2))];
    
  • Maple
    N:= 1000: # to get all terms <= N
    es:= select(t -> isprime(2*t+1), [$1..ilog2(N)]):
    Ps:= select(isprime, [2,seq(i,i=3..N,2)]):
    sort(select(`<=`, [seq(seq(p^e,e=es),p=Ps)],N)): # Robert Israel, Mar 16 2017
  • Mathematica
    Select[Range@ 227, PrimeQ[DivisorSigma[0, #^2]] &] (* Michael De Vlieger, Mar 09 2017 *)
  • PARI
    isok(n)=isprime(numdiv(n^2)) \\ Indranil Ghosh, Mar 09 2017
Previous Showing 61-70 of 108 results. Next