cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A055597 Exponent of the highest power of 2 dividing phi(n!).

Original entry on oeis.org

0, 0, 1, 3, 5, 6, 7, 10, 10, 11, 12, 14, 16, 17, 17, 21, 25, 26, 27, 29, 29, 30, 31, 34, 34, 35, 35, 37, 39, 40, 41, 46, 46, 47, 47, 49, 51, 52, 52, 55, 58, 59, 60, 62, 62, 63, 64, 68, 68, 69, 69, 71, 73, 74, 74, 77, 77, 78, 79, 81, 83, 84, 84, 90, 90, 91, 92, 94, 94, 95, 96
Offset: 1

Views

Author

Labos Elemer, Jul 11 2000

Keywords

Examples

			For n=8, 8! = 40320 = 128*315, phi(40320) = 9216 = 9*1024, so a(8)=10, while the exponent of 2 in 8! is only 7. Exponents of 2 are larger in phi(n!) than in n!.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerExponent[EulerPhi[n!], 2]; Array[a, 100] (* Amiram Eldar, Jul 12 2024 *)
  • PARI
    a(n) = valuation(eulerphi(n!), 2); \\ Amiram Eldar, Jul 12 2024
  • Python
    from math import factorial, prod
    from sympy import primerange
    from fractions import Fraction
    def A055597(n): return (~(m:=(factorial(n)*prod(Fraction(p-1,p) for p in primerange(n+1))).numerator)&m-1).bit_length() # Chai Wah Wu, Jul 06 2022
    

Formula

a(n) = A007814(A048855(n)) = A007814(A000010(n!)).

Extensions

Name clarified by Amiram Eldar, Jul 12 2024

A055656 Excess in exponents of powers of 2 in Euler phi of n! compared to that of n!.

Original entry on oeis.org

0, -1, 0, 0, 2, 2, 3, 3, 3, 3, 4, 4, 6, 6, 6, 6, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 14, 14, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 24, 24, 24, 24, 24, 24, 25, 25, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 32, 32
Offset: 1

Views

Author

Labos Elemer, Jul 11 2000

Keywords

Comments

The exponents of 2 is larger in phi(n!) than in n! if n > 4.

Examples

			For n = 8, 8! = 40320 = 128*315, phi(40320) = 9216 = 9*1024. The exponent of 2 in 8! is only 7, and in phi(8!) it is 10, so a(8) = 10-7 = 3.
		

Crossrefs

Programs

  • Mathematica
    eep2[n_]:=Module[{f=n!},IntegerExponent[EulerPhi[f],2]-IntegerExponent[f,2]]; Array[ eep2,80] (* Harvey P. Dale, Mar 18 2023 *)
  • PARI
    a(n) = {my(f = n!); valuation(eulerphi(f), 2) - valuation(f, 2);} \\ Amiram Eldar, Jul 15 2024
  • Python
    from math import factorial, prod
    from sympy import primerange
    from fractions import Fraction
    def A055656(n): return (~(m:=((f:=factorial(n))*prod(Fraction(p-1,p) for p in primerange(n+1))).numerator)&m-1).bit_length()-(~f & f-1).bit_length() # Chai Wah Wu, Jul 06 2022
    

Formula

A055679 Number of distinct prime factors of phi(n!).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14
Offset: 1

Views

Author

Labos Elemer, Jul 11 2000

Keywords

Comments

Number of distinct prime factors of n! and phi(n!) are respectively pi(n) and pi(floor(n/2)).

Crossrefs

Programs

  • Mathematica
    PrimeNu[EulerPhi[Range[90]!]] (* Harvey P. Dale, Sep 27 2011 *)
  • PARI
    for(n=1,50, print1(omega(eulerphi(n!)), ", ")) \\ G. C. Greubel, May 19 2017
    
  • PARI
    a(n) = primepi(n\2); \\ Michel Marcus, Aug 13 2024

Formula

a(n) = pi(floor(n/2)).

A067393 Number of nonprimes among the numbers in {1,2,3,...,n!} which are relatively prime to n!.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 67, 481, 4989, 51979, 570755, 5865449, 74226518, 904772855, 13111019601, 202135743076, 3307158697867, 53256981940267, 974755766640247, 17629139875485487, 357191085875727470, 7585952737111971220, 168542590546266903340, 3718034609300727209976
Offset: 0

Views

Author

Labos Elemer, Jan 22 2002

Keywords

Examples

			For n = 5, n! = 120, a(5) = phi(120) - pi(120) + pi(5) = 32 - 30 + 3 = 5; the 5 nonprimes are 1, 49, 77, 91, 119.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[ n! ]-PrimePi[ n! ]+PrimePi[n]

Formula

a(n) = phi(n!) - pi(n!) + pi(n) = A000010(n!) - A000720(n!) + A000720(n).

Extensions

a(18)-a(19) from Donovan Johnson, Mar 24 2011
a(20)-a(23) from Giovanni Resta, Oct 29 2019

A104354 Euler's totient of A104350(n).

Original entry on oeis.org

1, 1, 2, 4, 16, 48, 288, 576, 1728, 8640, 86400, 259200, 3110400, 21772800, 108864000, 217728000, 3483648000, 10450944000, 188116992000, 940584960000, 6584094720000, 72425041920000, 1593350922240000, 4780052766720000, 23900263833600000, 310703429836800000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[FoldList[Times, Array[FactorInteger[#][[-1, 1]] &, 30]]] (* Amiram Eldar, Apr 08 2024 *)
  • PARI
    gpf(n) = my(f=factor(n)[, 1]); f[#f];
    a(n) = eulerphi(prod(i=2, n, gpf(i))); \\ Michel Marcus, Nov 12 2023

Formula

a(n) = A000010(A104350(n)).

Extensions

a(1) prepended by Michel Marcus, Nov 12 2023

A129335 a(n) = phi(n!!) where phi is the Euler totient function. In other words, a(n) = A000010(A006882(n)).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 48, 128, 432, 1024, 4320, 12288, 51840, 147456, 777600, 2359296, 12441600, 42467328, 223948800, 849346560, 4702924800, 16986931200, 103464345600, 407686348800, 2586608640000, 9784472371200, 69838433280000
Offset: 1

Views

Author

Leroy Quet, May 26 2007

Keywords

Crossrefs

Programs

Formula

If n>2 is prime, a(n) = (n-1)*a(n-2). If n=2*p, where p is odd prime, a(n)=(n-2)*a(n-2). Otherwise, a(n) = n*a(n-2). - Max Alekseyev, May 26 2007

Extensions

More terms from Stefan Steinerberger, May 30 2007

A273060 a(n) = phi(n!)/phi(n).

Original entry on oeis.org

1, 1, 1, 4, 8, 96, 192, 2304, 13824, 207360, 829440, 24883200, 99532800, 2786918400, 31352832000, 501645312000, 4013162496000, 192631799808000, 1155790798848000, 52010585948160000, 728148203274240000, 19223112566439936000, 192231125664399360000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(Factorial(n)) div EulerPhi(n): n in [1..25]]; // Vincenzo Librandi, Oct 30 2016
    
  • Maple
    seq(numtheory:-phi(n!)/numtheory:-phi(n), n=1..50); # Robert Israel, Nov 13 2016
  • Mathematica
    Table[EulerPhi[n!]/EulerPhi[n], {n,1,25}] (* G. C. Greubel, Oct 30 2016 *)
  • PARI
    a(n) = eulerphi(n!)/eulerphi(n); \\ Michel Marcus, Oct 30 2016

Formula

a(n) = A048855(n)/A000010(n). - Michel Marcus, Oct 30 2016

A276000 Least k such that n! divides phi(k!) (k > 0).

Original entry on oeis.org

1, 3, 6, 6, 10, 10, 14, 14, 14, 14, 22, 22, 26, 26, 26, 26, 34, 34, 38, 38, 38, 38, 46, 46, 46, 46, 46, 46, 58, 58, 62, 62, 62, 62, 62, 62, 74, 74, 74, 74, 82, 82, 86, 86, 86, 86, 94, 94, 94, 94, 94, 94, 106, 106, 106, 106, 106, 106, 118, 118, 122, 122, 122, 122
Offset: 1

Views

Author

Altug Alkan, Aug 16 2016

Keywords

Examples

			a(2) = 3 because phi(3!) is divisible by 2!.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N): n:= 0:
    for k from 1 while n < N do
      r:= numtheory:-phi(k!);
      for i from n+1 to N while r mod (i!) = 0 do
        V[i]:= k; n:= i;
      od;
    od:
    convert(V,list);# Robert Israel, Apr 24 2020
  • Mathematica
    Array[Block[{k = 1}, While[Mod[EulerPhi[k!], #!] != 0, k++]; k] &, 64] (* Michael De Vlieger, Apr 24 2020 *)
  • PARI
    a(n) = {my(k = 1); while(eulerphi(k!) % n!, k++); k; }

Formula

a(n) = 2*A007917(n) for n>2. - Andrey Zabolotskiy, Aug 16 2016

A291597 Numbers n such that cototient(n) does not divide phi(n!).

Original entry on oeis.org

5865, 10005, 15045, 28815, 37995, 45645, 50235, 170085, 310845, 347565, 521985, 613785, 627555, 707115, 791265, 797385, 830415, 873885, 994755, 1014645, 1066665, 1078815, 1202835, 1323705, 1366545, 1542495, 1689465, 1730865, 1819605, 2001495, 2013735, 2246295, 2264655
Offset: 1

Views

Author

Altug Alkan, Aug 27 2017

Keywords

Comments

Terms are 3*5*17*23, 3*5*23*29, 3*5*17*59, 3*5*17*113, ...
Terms are not prime powers as cototient(p^k) = p^(k-1) which divides phi(n!). - Chai Wah Wu, Aug 30 2017

Examples

			5865 is a term because 5865 - phi(5865) = 3049 and phi(5865!) is not divisible by 3049.
45645 is a term because 45645 - phi(45645) = 22861 and phi(45645!) is not divisible by 22861.
		

Crossrefs

Programs

  • PARI
    valp(n, p)=my(s); while(n\=p, s+=n); s
    is(n)=my(m=n-eulerphi(n), t, u); forprime(p=2, n, t=valp(n, p)-1; if(t && (u=valuation(m,p)), m/=p^min(t,u); if(m==1, return(0))); t=gcd(m,p-1); if(t>1, m/=t; if(m==1, return(0)))); m>1 \\ Charles R Greathouse IV, Aug 27 2017

Extensions

a(8)-a(22) from Charles R Greathouse IV, Aug 27 2017
a(23)-a(29) from Chai Wah Wu, Aug 29 2017
a(30)-a(33) from Chai Wah Wu, Aug 30 2017

A067562 Odd values of k such that phi(k)! divides phi(k!) where phi(k) = A000010(k).

Original entry on oeis.org

1, 3, 15, 63, 75, 105, 165, 195, 231, 255, 285, 315, 495, 525, 585, 735, 825, 945, 975, 1155, 1275, 1365, 1485, 1575, 1755, 1785, 1815, 1995, 2145, 2205, 2415, 2475, 2535, 2625, 2805, 2835, 2925, 3003, 3045, 3135, 3255, 3315, 3465, 3675, 3705, 3795, 3885, 3927
Offset: 1

Views

Author

Benoit Cloitre, Jan 29 2002; corrected Jun 03 2003

Keywords

Comments

a(n) == 0 (mod 3) for any n > 1.
k cannot be divisible by 5 for k = 1, 3, 63, 231, 3003, 3927, 4389, 4641, 5187, 5313, 9009, 11781, 13167, 13923, 15561, 15939, 21021, 27027, 27489, 30723, ... - Jinyuan Wang, Apr 05 2020

Crossrefs

Programs

  • PARI
    is(k) = (k%6==3 && eulerphi(k!)%eulerphi(k)!==0) || k==1; \\ Jinyuan Wang, Apr 05 2020

Extensions

More terms from Jinyuan Wang, Apr 05 2020
Previous Showing 11-20 of 21 results. Next