cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A069226 a(n) = gcd(n, 2^n + 1).

Original entry on oeis.org

2, 1, 1, 3, 1, 1, 1, 1, 1, 9, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 27, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 25, 3, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 17, 3, 5, 1, 1, 1, 1, 3, 1, 1, 13, 1, 1, 81, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1
Offset: 0

Views

Author

Vladeta Jovovic, Apr 12 2002

Keywords

Comments

First occurrence of n: a(1)=1, a(3)=3, a(10)=5, a(9)=9, a(55)=11, a(78)=13, a(68)=17, a(50)=25, a(27)=27, a(406)=29, a(165)=33, a(666)=37, a(301)=43, a(1378)=53, a(1711)=59, a(390)=65, a(81)=81, a(3403)=83, a(2328)=97, a(495)=99, ... - R. J. Mathar, Dec 14 2016

Crossrefs

Cf. A006521 (fixed points), A014491, A049095, A049096, A060444.

Programs

  • Mathematica
    Table[GCD[n,2^n+1],{n,100}] (* Harvey P. Dale, Dec 12 2012 *)
  • PARI
    A069226(n) = gcd(n, 1+(1<Antti Karttunen, Jan 15 2025

Extensions

Term a(0) = 2 prepended by Antti Karttunen, Jan 15 2025

A272361 Numbers n such that (2^n + 1) / gcd(n, 2^n + 1) is not squarefree.

Original entry on oeis.org

182, 546, 910, 1274, 1638, 2002, 2366, 2730, 3094, 3458, 3822, 4186, 4550, 4914, 5278, 5642, 6006, 6370, 6734, 7098, 7462, 7826, 8190, 8554, 8918, 9282, 9646, 10010, 10374, 10738, 11102, 11466, 11830, 12194, 12558, 12922, 13286, 13650, 14014, 14378, 14742, 15106, 15470, 15834
Offset: 1

Views

Author

Thomas Ordowski, Apr 27 2016

Keywords

Comments

Odd multiples of integer A002326((q-1)/2)/2, where q is a Wieferich prime A001220.

Crossrefs

Programs

  • PARI
    isok(n) = my(m=2^n+1); !issquarefree(m/gcd(n, m)); \\ Michel Marcus, Apr 27 2016

A334213 Numbers m such that m^k + 1 is squarefree for all 0 <= k <= m.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 16, 30, 36, 46, 256
Offset: 1

Views

Author

Gionata Neri, Apr 18 2020

Keywords

Comments

m = 2^i is a term iff k*i is not in A049096 with 0 < k < m + 1. Up to i = 128, there are no more terms of the form 2^i. a(12) > 10^7, if it exists. - Jinyuan Wang, May 01 2020

Examples

			4^0 + 1 = 2 is squarefree, 4^1 + 1 = 5 is squarefree, 4^2 + 1 = 17 is squarefree, 4^3 + 1 = 5*13 is squarefree and 4^4 + 1 = 257 is squarefree, so 4 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Do[L=Length[a];a=Select[a=m^Range[0,m-1]+1,SquareFreeQ[#]&];If[L==m-1,Print[m-1]],{m,0,1000}] (* Metin Sariyar, Apr 21 2020 *)
  • PARI
    isOK(m) = k=0; until(k>m, if(!issquarefree(m^k+1), return(0)); k++); 1;
    for(m=0, 99, if(isOK(m), print1(m, ", ")))

Extensions

a(11) from Jinyuan Wang, May 01 2020

A349989 a(n) is the smallest k such that k^n + (k+1)^n is divisible by a square > 1.

Original entry on oeis.org

4, 3, 1, 113, 2, 3, 3, 19, 1, 1, 4, 113, 4, 3, 1, 765, 4, 3, 4, 87, 1, 3, 4, 19, 2, 2, 1, 28, 4, 1, 4, 151, 1, 3, 2, 113, 4, 3, 1, 19, 4, 3, 4, 113, 1, 3, 4, 335, 3, 1, 1, 113, 4, 3, 1, 19, 1, 3, 4, 87, 4, 3, 1, 379, 2, 3, 4, 1, 1, 1, 4, 19, 4, 3, 1, 113, 3, 1, 4
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 07 2021

Keywords

Comments

a(64) <= 379; a(76) <= 113. Terms a(65)..a(79): 2, 3, 4, 1, 1, 1, 4, 19, 4, 3, 1, a(76), 3, 1, 4.
At k=4, k^n + (k+1)^n = 4^n + 5^n is a multiple of 9 for all odd n, and at k=3, k^n + (k+1)^n = 3^n + 4^n is a multiple of 25 for all n == 2 (mod 4). Thus, a(n) <= 4 if n is not a multiple of 4.

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(issquarefree(k^n + (k+1)^n), k++); k; \\ Michel Marcus, Dec 09 2021
    
  • Python
    from sympy.ntheory.factor_ import core
    def squarefree(n): return core(n, 2) == n
    def a(n):
        k = 1
        while squarefree(k**n + (k+1)**n): k += 1
        return k
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Dec 09 2021

Formula

a(n) = A289629(n) if n is even.
a(k) = 1 for k in A049096.
a(n) <= 4 if 4 does not divide n; among terms where 4 divides n, certain terms appear repeatedly. E.g.,
a(n) <= 113 for n == 4 (mod 8): for all such n, 17^2 divides 113^n + 114^n;
a(n) <= 19 for n == 8 (mod 16): for all such n, 17^2 divides 19^n + 20^n;
a(n) <= 765 for n == 16 (mod 32): for all such n, 97^2 divides 765^n + 766^n;
a(n) <= 87 for n == 20 (mod 40): for all such n, 41^2 divides 87^n + 88^n;
a(n) <= 28 for n == 68 (mod 136): for all such n, 17^2 divides 28^n + 29^n;
a(n) <= 151 for n == 32 (mod 64): for all such n, 257^2 divides 151^n + 152^n;
a(n) <= 335 for n == 48 (mod 96): for all such n, 769^2 divides 335^n + 336^n.

Extensions

a(64)-a(79) from Kevin P. Thompson, Feb 23 2022

A187965 Numbers k such that 2^k - 1 and 2^k + 1 are not squarefree.

Original entry on oeis.org

21, 30, 63, 78, 90, 105, 110, 147, 150, 189, 204, 210, 231, 234, 270, 273, 310, 315, 330, 340, 357, 390, 399, 441, 450, 465, 483, 510, 525, 546, 550, 567, 570, 609, 612, 630, 651, 657, 666, 690, 693, 702, 735, 750, 759, 770, 777, 810, 819, 858, 861, 870, 903, 930, 945, 987, 990, 1014, 1020, 1029, 1050, 1071
Offset: 1

Views

Author

Keywords

Comments

If k is in the sequence, then so is m*k for any odd m. - Thomas Ordowski, Nov 23 2015
Note that 110, 310, 340, 550, 770 are not divisible by 3.
Let b(p) be the multiplicative order of 2 modulo p^2. Then k is in this sequence if and only if there exists odd primes p, q such that b(p) | k and k == b(q)/2 (mod b(q)) with even b(q). For example, we have b(7) = 21, b(3) = 6 so b(7) | 21, 21 == b(3)/2 (mod b(3)), hence 21 is a term; likewise, b(3) = 6, b(5) = 20, so b(3) | 30, 30 == b(5)/2 (mod b(5)), hence 30 is a term. - Jianing Song, Jan 20 2021

Examples

			2^21 - 1 = 7^2 * 127 * 337, 2^21 + 1 = 3^2 * 43 * 5419.
		

Crossrefs

Cf. A243905 (multiplicative orders of 2 modulo p^2), A242777 (k+1 is prime).

Programs

  • Magma
    [n: n in [1..250] | not IsSquarefree(2^n-1) and not IsSquarefree(2^n+1)]; // Vincenzo Librandi, Nov 23 2015
  • Mathematica
    Select[ Range@ 500, !(SquareFreeQ[2^# - 1] || SquareFreeQ[2^# + 1]) &]
    Select[Range[1100],NoneTrue[2^#+{1,-1},SquareFreeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 22 2019 *)
  • PARI
    is(n) = !issquarefree(2^n-1) && !issquarefree(2^n+1);
    for(n=1, 1e3, if(is(n), print1(n, ", "))) \\ Altug Alkan, Nov 22 2015
    

Extensions

More terms from Joerg Arndt, Nov 23 2015

A172522 Partial sums of A049094.

Original entry on oeis.org

6, 18, 36, 56, 77, 101, 131, 167, 207, 249, 297, 351, 411, 474, 540, 612, 690, 770, 854, 944, 1040, 1140, 1242, 1347, 1455, 1565, 1679, 1799, 1925, 2057, 2193, 2331, 2471, 2615, 2762, 2912, 3067, 3223, 3383, 3545, 3713, 3887, 4067, 4253, 4442, 4634, 4832
Offset: 1

Views

Author

Jonathan Vos Post, Feb 06 2010

Keywords

Comments

The subsequence of primes in this sequence begins: 101, 131, 167, 3067.

Examples

			a(20) = 6 + 12 + 18 + 20 + 21 + 24 + 30 + 36 + 40 + 42 + 48 + 54 + 60 + 63 + 66 + 72 + 78 + 80 + 84 + 90.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] {i such that 2^i - 1 is divisible by a square}.

Extensions

More terms from R. J. Mathar, Feb 16 2010
Previous Showing 11-16 of 16 results.