cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A052708 A simple context-free grammar: convolution square of A049140.

Original entry on oeis.org

0, 0, 1, 2, 5, 16, 56, 204, 768, 2970, 11726, 47060, 191412, 787304, 3269100, 13684864, 57691353, 244713654, 1043684478, 4472828400, 19252045120, 83188965420, 360734837280, 1569296837160, 6846931211250, 29954007587556, 131367797081352, 577451514567536
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A049140.

Programs

  • Maple
    spec := [S,{C=Prod(S,S),S=Prod(B,B),B=Union(S,C,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

G.f.: RootOf(-_Z+_Z^4+_Z^2+x)^2.
Recurrence: {a(1)=0, a(2)=1, a(3)=2, a(4)=5, (-576-1920*n+3072*n^2+6144*n^3)*a(n)+(-9096-30320*n-28032*n^2-7936*n^3)*a(n+1)+(41380*n+20808+28032*n^2+6272*n^3)*a(n+2)+(-26520*n^2-60704*n-45600-3784*n^3)*a(n+3)+(589*n^3+5301*n^2+15314*n+14136)*a(n+4)}.

A052710 A simple context-free grammar: difference between A049140 and its convolution square.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 52, 201, 792, 3168, 12844, 52676, 218148, 910996, 3832072, 16222352, 69061200, 295477550, 1269863304, 5479456290, 23730089460, 103109502780, 449376255840, 1963920878400, 8604858967692, 37790621078040, 166329352089096, 733551460238308
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Prod(B,B),S=Prod(C,C),B=Union(S,C,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

G.f.: RootOf(-_Z+_Z^4+_Z^2+x) - RootOf(-_Z+_Z^4+_Z^2+x)^2 - x.
Recurrence: {a(1)=0, a(2)=0, a(4)=1, a(3)=0, a(5)=4, a(6)=14, (2304-4608*n-36864*n^2+73728*n^3)*a(n)+(46368+121536*n+59904*n^2-9216*n^3)*a(n+1)+(-79800-56512*n+59520*n^2+34048*n^3)*a(n+2)+(200516*n+185964+68544*n^2+7456*n^3)*a(n+3)+(-15024*n^2-22732*n+6864-2228*n^3)*a(n+4)+(-217*n^3-2604*n^2-10199*n-13020)*a(n+5)}.
a(n) = A049140(n) - A052708(n), n>1. - R. J. Mathar, Jan 13 2025

A369215 Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x) ).

Original entry on oeis.org

1, 4, 29, 261, 2627, 28315, 319648, 3731037, 44663058, 545312504, 6764556591, 85015779095, 1080185111768, 13852183882612, 179058158369828, 2330621446075640, 30519758687849439, 401806204894374041, 5315243189757111099, 70613088335938995385, 941714812929017751855
Offset: 0

Views

Author

Seiichi Manyama, Jan 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[InverseSeries[Series[x((1-x)^3-x),{x,0,21}],x]/x,x] (* Stefano Spezia, Mar 31 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x))/x)
    
  • PARI
    a(n) = sum(k=0, n, binomial(n+k, k)*binomial(4*n+2*k+2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(4*n+2*k+2,n-k).

A217358 Series reversion of x-x^3-x^4.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 16, 45, 110, 308, 819, 2275, 6328, 17748, 50388, 143412, 411939, 1187329, 3441559, 10015005, 29255655, 85766655, 252201690, 743819115, 2199446652, 6519727800, 19369551936, 57665571072, 172011364452, 514021640564, 1538650042952
Offset: 1

Views

Author

R. J. Mathar, Oct 01 2012

Keywords

Examples

			If y= x-x^3-x^4, then x= y + y^3 + y^4 +3*y^5 +7*y^6 +16*y^7 + ...
		

Crossrefs

Cf. A049140 (reversion of x-x^2-x^4).

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^3 - x^4, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Sep 10 2013 *)

Formula

Conjecture: 46*n*(n-1)*(n-2)*a(n) -(n-1)*(n-2)*(11*n-74)*a(n-1) -(n-2)*(336*n^2-1359*n+1351)*a(n-2) +(-347*n^3+2190*n^2-3861*n+1330)*a(n-3) + 8*(2*n-7)*(4*n-15)*(4*n-17)*a(n-4) = 0.
Recurrence (order 3): 23*(n-2)*(n-1)*n*(9*n-25)*a(n) = -(n-2)*(n-1)*(54*n^2 - 231*n + 248)*a(n-1) + (n-2)*(1485*n^3 - 10065*n^2 + 22292*n - 16088)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(9*n-16)*a(n-3). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 3/23*(2367+966*sqrt(3))^(1/3)+423/(23*(2367+966*sqrt(3))^(1/3))-2/23 = 3.145200906807902443... is the root of the equation -256 - 165*d + 6*d^2 + 23*d^3 = 0 and c = 1/48*sqrt(2)*sqrt((80793 + 65184*sqrt(3))^(1/3)*((80793 + 65184 * sqrt(3))^(2/3)-1839+9*(80793 + 65184 * sqrt(3))^(1/3)))/((80793 + 65184 * sqrt(3))^(1/3)*sqrt(Pi)) = 0.098446219937815765... - Vaclav Kotesovec, Sep 10 2013

A368931 Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 154, 819, 4560, 26244, 154874, 932074, 5698745, 35297535, 221016593, 1396717756, 8896798020, 57062237502, 368201804973, 2388587515239, 15568995139404, 101913055166811, 669678357109300, 4415837460391845, 29210203356645090
Offset: 0

Views

Author

Seiichi Manyama, Jan 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n-2*k+1, n-3*k))/(n+1);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^3))/x)

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(3*n-2*k+1,n-3*k).

A370624 Coefficient of x^n in the expansion of 1 / (1-x-x^3)^n.

Original entry on oeis.org

1, 1, 3, 13, 55, 231, 987, 4278, 18711, 82390, 364793, 1622556, 7244419, 32449158, 145747290, 656199048, 2960596359, 13382107227, 60587421882, 274712295550, 1247233045905, 5669390005950, 25798654040580, 117513750346200, 535766200488675, 2444698473079356
Offset: 0

Views

Author

Seiichi Manyama, May 01 2024

Keywords

Crossrefs

Cf. A049140.

Programs

  • PARI
    a(n, s=3, t=1, u=0) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n-2*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^3) ).

A365268 G.f. satisfies A(x) = 1 + x*A(x)^2*(1 + x^3*A(x)^2).

Original entry on oeis.org

1, 1, 2, 5, 15, 48, 160, 549, 1929, 6909, 25134, 92612, 344924, 1296376, 4910656, 18728645, 71857133, 277160183, 1074085446, 4180057725, 16329796959, 64014638564, 251734985808, 992788252700, 3925688845948, 15560762343388, 61818928594952
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*n-4*k+1, n-3*k)/(2*n-4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*n-4*k+1,n-3*k)/(2*n-4*k+1).

A369214 Expansion of (1/x) * Series_Reversion( x * ((1-x)^2-x^3) ).

Original entry on oeis.org

1, 2, 7, 31, 155, 833, 4696, 27393, 163944, 1001022, 6211049, 39048685, 248213672, 1592561156, 10300192220, 67083304750, 439571860881, 2895898913453, 19169805142929, 127442939722175, 850536450459795, 5696270624620125, 38271171118343550
Offset: 0

Views

Author

Seiichi Manyama, Jan 16 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^2-x^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n-k+1, n-3*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(3*n-k+1,n-3*k).

A259938 Expansion of the series reversion of Sum_{n>=1} x^(n^2).

Original entry on oeis.org

0, 1, 0, 0, -1, 0, 0, 4, 0, -1, -22, 0, 13, 140, 0, -136, -970, 9, 1330, 7104, -231, -12650, -54096, 3900, 118780, 423890, -54810, -1108380, -3393696, 695640, 10311840, 27615648, -8282604, -95810606, -227480848, 94449456, 889817328, 1890685212, -1044402840, -8263944216, -15811484852
Offset: 0

Views

Author

Vladimir Reshetnikov, Jul 09 2015

Keywords

Comments

x + x^4 + x^9 + x^16 + x^25 + ... is the expansion of (theta_3(0, x) - 1)/2, where theta_3 is the Jacobi theta function.

Crossrefs

Programs

  • Mathematica
    InverseSeries[(EllipticTheta[3, 0, x] - 1)/2 + O[x]^30][[3]]
  • PARI
    Vec( serreverse( sum(i=1,32,x^i^2) + O(x^33^2) ) ); \\ Max Alekseyev, Jul 06 2021

Formula

For n>1, a(n) = Sum_{j2,j3,...} (-1)^(j2+j3+...) * (n-1+j2+j3+...)! / (j2!*j3!*...) / n!, where the sum is taken over all nonnegative integers j2, j3, ... such that (2^2-1)*j2 + (3^2-1)*j3 + ... = n-1. - Max Alekseyev, Jul 06 2021

A383479 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(3,0),(0,1).

Original entry on oeis.org

1, 2, 6, 24, 100, 420, 1792, 7752, 33858, 148940, 658944, 2929056, 13070876, 58521344, 262754040, 1182619280, 5334172518, 24104916504, 109111142376, 494630028200, 2245300152480, 10204575481320, 46429481139000, 211460450151600, 963971663881200, 4398118872144192
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 3 then t:= t + procname(x-3,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..25); # Robert Israel, May 28 2025
  • PARI
    a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/(1 - x - x^3)^(n+1).
a(n) = (n+1) * A049140(n+1).
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k,k) * binomial(2*n-2*k,n-3*k).
Showing 1-10 of 18 results. Next