cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 490 results. Next

A131327 Triangle |4*|A049310(n,k)| - 3| read by rows, 0<=k<=n.

Original entry on oeis.org

1, 3, 1, 1, 3, 1, 3, 5, 3, 1, 1, 3, 9, 3, 1, 3, 9, 3, 13, 3, 1, 1, 3, 21, 3, 17, 3, 1, 3, 13, 3, 37, 3, 21, 3, 1, 1, 3, 37, 3, 57, 3, 25, 3, 1, 3, 17, 3, 77, 3, 81, 3, 29, 3, 1, 1, 3, 57, 3, 137, 3, 109, 3, 33, 3, 1, 3, 21, 3, 137, 3, 221, 3, 141, 3, 37, 3, 1, 1, 3, 81, 3, 277, 3, 333, 3, 177
Offset: 0

Views

Author

Gary W. Adamson, Jun 28 2007

Keywords

Examples

			First few rows of the triangle are:
1;
3, 1;
1, 3, 1;
3, 5, 3, 1;
1, 3, 9, 3, 1;
3, 9, 3, 13, 3, 1;
1, 3, 21, 3, 17, 3, 1;
...
		

Crossrefs

Cf. A049310, A131328 (row sums), A131324, A131325, A131326.

Programs

Extensions

Definition corrected. - R. J. Mathar, Aug 13 2012

A131777 5*A065941 - 4*A049310.

Original entry on oeis.org

1, 5, 1, 1, 5, 1, 5, -3, 10, 1, 1, 5, 3, 10, 1, 5, -7, 20, -1, 15, 1, 1, 5, 1, 20, 10, 15, 1, 5, -11, 30, -15, 50, 6, 20, 1, 1, 5, -5, 30, 15, 50, 22, 20, 1, 5, -15, 40, -45, 105, -9, 100, 18, 25, 1
Offset: 1

Views

Author

Gary W. Adamson, Jul 14 2007

Keywords

Comments

Row sums = A022096(n-1).

Examples

			First few rows of the triangle are:
1;
5, 1
1, 5, 1;
5, -3, 10, 1;
1, 5, 3, 10, 1;
5, -7, 20, -1, 15, 1;
1, 5, 1, 20, 10, 15, 1;
...
		

Crossrefs

Formula

5*A065941 - 4*A049310 as infinite lower triangular matrices.

Extensions

Corrected A-number in row sums reference R. J. Mathar, Jun 16 2009

A131778 6*A065941 - 5*A049310.

Original entry on oeis.org

1, 6, 1, 1, 6, 1, 6, -4, 12, 1, 1, 6, 3, 12, 1, 6, -9, 24, -2, 18, 1, 1, 6, 0, 24, 11, 18, 1, 6, -14, 36, -20, 60, 6, 24, 1, 1, 6, -8, 36, 15, 60, 25, 24, 1, 6, -19, 48, -58, 126, -15, 120, 20, 30, 1
Offset: 1

Views

Author

Gary W. Adamson, Jul 14 2007

Keywords

Comments

Row sums = A022097, a Fibonacci-like sequence starting (1, 7, 8, 15, 23, 38, ...).

Examples

			First few rows of the triangle:
  1;
  6,  1;
  1,  6,  1;
  6, -4, 12,  1;
  1,  6,  3, 12,  1;
  6, -9, 24, -2, 18,  1;
  1,  6,  0, 24, 11, 18,  1;
  ...
		

Crossrefs

Formula

6*A065941 - 5*A049310 as infinite lower triangular matrices.

A285872 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-sqrt(3), +sqrt(3)).

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 8, 7, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 16, 15, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 24, 23, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 32, 31, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 40, 39, 40, 41, 42, 43, 44, 43, 44, 45
Offset: 0

Views

Author

Wolfdieter Lang, May 12 2017

Keywords

Comments

See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by Michel Lagneau (see A008611) on Fibonacci polynomials.

Examples

			n = 3: S(3, x) = x*(-2 + x^2), with all three zeros (-sqrt(2), 0, +sqrt(2)) in the interval (-sqrt(3), +sqrt(3)).
n = 4: S(4, x) = 1 - 3*x^2 + x^4, all four zeros  (-phi, -1/phi, 1/phi, phi) with phi = (1 + sqrt(5))/2, approximately 1.618, lie in the interval.
n = 6, two zeros of  S(6, x) = -1 + 6*x^2 - 5*x^4 + x^6 are out of the interval (-sqrt(3), +sqrt(3)), namely - 1.8019... and +1.8019... .
		

Crossrefs

Cf. A008611(n-1) (1), A049310, A285869 (sqrt(2)), A285870.

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x+x^2+x^3-x^4+x^5)/((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)))); // G. C. Greubel, Mar 08 2018
  • Mathematica
    CoefficientList[Series[x*(1+x+x^2+x^3-x^4+x^5)/((1-x)^2*(1+x)*(1-x+x^2)*(1+x+x^2)), {x, 0, 50}], x] (* G. C. Greubel, Mar 08 2018 *)
  • PARI
    concat(0, Vec(x*(1 + x + x^2 + x^3 - x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ Colin Barker, May 18 2017
    

Formula

a(n) = 2*b(n) if n is even and 1 + 2*b(n) if n is odd with b(n) = floor(n/2) - floor((n+1)/6) = A285870(n). See the g.f. for {b(n)}_{n>=0} there.
From Colin Barker, May 18 2017: (Start)
G.f.: x*(1 + x + x^2 + x^3 - x^4 + x^5) / ((1 - x)^2*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>6.
(End)

A131324 2*A049310 - A000012(signed).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 7, 1, 1, 1, 1, 11, 1, 9, 1, 1, 1, 7, 1, 19, 1, 11, 1, 1, 1, 1, 19, 1, 29, 1, 13, 1, 1, 1, 9, 1, 39, 1, 41, 1, 15, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 28 2007

Keywords

Comments

Row sums = A062114: (1, 2, 3, 6, 9, 16, 25, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  1,  1;
  1,  3,  1,  1;
  1,  1,  5,  1,  1;
  1,  5,  1,  7,  1,  1,
  1,  1, 11,  1,  9,  1,  1;
  1,  7,  1, 19,  1, 11,  1,  1;
  ...
		

Crossrefs

Formula

2*A049310 - A000012(signed + - + - ... by columns).

A193664 Q-residue of A049310 (triangle of coefficients of Fibonacci polynomials), where Q=Pascal's triangle. (See Comments.)

Original entry on oeis.org

0, 1, 1, 6, 11, 68, 177, 1215, 4059, 30733, 124408, 1027972, 4862600, 43450761, 234283662, 2247091674, 13563976285, 138780931929, 925063455844, 10044476018973, 73144254450840, 839146997933059, 6618306039456419
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

The definition of Q-residue is given at A193649.

Crossrefs

Programs

  • Mathematica
    f[n_, x_] := Fibonacci[n, x];
    q[n_, k_] := Coefficient[(x + 1)^n, x, k]; (* Pascal's triangle *)
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    p[n_, k_] := Coefficient[f[n, x], x, k];
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 22}]    (* A193664 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]  (* A000110 *)
    TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]

A248163 Chebyshev's S polynomials (A049310) evaluated at 34/3 and multiplied by powers of 3 (A000244).

Original entry on oeis.org

1, 34, 1147, 38692, 1305205, 44028742, 1485230383, 50101574344, 1690086454249, 57012025275370, 1923198081274339, 64875626535849196, 2188462519487403613, 73823845023749080078, 2490314568132082090135, 84006280711277049343888, 2833800713070230938880977, 95593167717986358477858226
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2014

Keywords

Comments

This sequence appears in the solution for the curvature sequence of the touching circle and chord example given in A249457. See also the pair A249862(n) and a(n-1), with a(-1) = 0, for which details are given in A249862.

Crossrefs

Programs

  • Magma
    I:=[1, 34]; [n le 2 select I[n] else 34*Self(n-1) - 9*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2014
    
  • Mathematica
    CoefficientList[Series[1/(1-34 x +(3 x)^2), {x,0,40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
    Table[3^n*ChebyshevU[n,17/3], {n,0,40}] (* G. C. Greubel, May 31 2025 *)
  • PARI
    a(n) = 3^n*polchebyshev(n, 2, 17/3); \\ Michel Marcus, May 31 2025
  • SageMath
    def A248163(n): return 3^n*chebyshev_U(n,17/3)
    print([A248163(n) for n in range(41)]) # G. C. Greubel, May 31 2025
    

Formula

a(n) = 3^n*S(n, 34/3) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 34*x + 9*x^2).
a(n) = 34*a(n-1) - 9*a(n-2), a(-1) = 0, a(0) = 1 .
E.g.f.: exp(17*x)*(140*cosh(2*sqrt(70)*x) + 17*sqrt(70)*sinh(2*sqrt(70)*x))/140. - Stefano Spezia, Mar 24 2023

Extensions

a(16)-a(17) from Stefano Spezia, Mar 24 2023

A249863 Chebyshev S polynomial (A049310) evaluated at x = 26/7 and multiplied by powers of 7 (A000420).

Original entry on oeis.org

1, 26, 627, 15028, 360005, 8623758, 206577463, 4948449896, 118537401609, 2839498396930, 68018625641339, 1629348845225244, 39030157319430733, 934945996889162102, 22396118210466108735, 536486719624549884112
Offset: 0

Views

Author

Wolfdieter Lang, Nov 09 2014

Keywords

Comments

This sequence appears in the solution of the curvature sequence of the touching circle and chord example given by Kival Ngaokrajang in A249458. See also the pair A249864(n) and a(n-1), with a(-1) = 0, for which details are given in A249864.

Crossrefs

Programs

  • Magma
    I:=[1,26]; [n le 2 select I[n] else 26*Self(n-1)-49*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 09 2014
  • Mathematica
    LinearRecurrence[{26,-49},{1,26},20] (* Harvey P. Dale, Jun 30 2017 *)

Formula

a(n) = 7^n*S(n, 26/7) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 26*x + (7*x)^2).
a(n) = 26*a(n-1) - 49*a(n-2), a(-1) = 0, a(0) = 1 .

A131375 A007318 + A046854 - A049310.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 6, 6, 5, 1, 2, 5, 13, 10, 6, 1, 1, 9, 15, 24, 15, 7, 1, 2, 7, 27, 35, 40, 21, 8, 1, 1, 12, 28, 66, 70, 62, 28, 9, 1, 2, 9, 46, 84, 141, 126, 91, 36, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

Row sums = A117591: (1, 3, 5, 10, 19, 37, 72,...).

Examples

			First few rows of the triangle are:
1;
2, 1;
1, 3, 1;
2, 3, 4, 1;
1, 6, 6, 5, 1;
2, 5, 13, 10, 6, 1;
1, 9, 15, 24, 15, 7, 1;
...
		

Crossrefs

Formula

A007318 + A046854 - A049310 as infinite lower triangular matrices.

A135222 Triangle A049310 + A000012 - I, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 4, 1, 1, 1, 4, 1, 5, 1, 1, 2, 1, 7, 1, 6, 1, 1, 1, 5, 1, 11, 1, 7, 1, 1, 2, 1, 11, 1, 16, 1, 8, 1, 1, 1, 6, 1, 21, 1, 22, 1, 9, 1, 1, 2, 1, 16, 1, 36, 1, 29, 1, 10, 1, 1, 1, 7, 1, 36, 1, 57, 1, 37, 1, 11, 1, 1, 2, 1, 22, 1, 71, 1, 85, 1, 46, 1, 12, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 23 2007

Keywords

Comments

Row sums = A081659: (1, 2 4, 6, 9, 13, 19, 28, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  2, 1,  1;
  1, 3,  1,  1;
  2, 1,  4,  1,  1;
  1, 4,  1,  5,  1, 1;
  2, 1,  7,  1,  6, 1, 1;
  1, 5,  1, 11,  1, 7, 1, 1;
  2, 1, 11,  1, 16, 1, 8, 1, 1;
...
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=n then 1
        else 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*Pi/2) )
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..15); # G. C. Greubel, Nov 20 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==n, 1, 1 + Abs[Simplify[((1+(-1)^(n-k))/2)* Binomial[(n+k)/2, (n-k)/2]*Cos[(n-k)*Pi/2]]] ]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==n): return 1
        else: return 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*pi/2) )
    [[T(n, k) for k in (0..n)] for n in (0..15)] # G. C. Greubel, Nov 20 2019

Formula

T(n,k) = A049310(n,k) + A000012(n,k) - Identity matrix, as infinite lower triangular matrices.
T(n,k) = 1 + abs( ((1+(-1)^(n-k))/2)*binomial((n+k)/2, (n-k)/2)*cos((n-k)*Pi/2) ), with T(n,n) = 1. - G. C. Greubel, Nov 20 2019

Extensions

More terms added and offset changed by G. C. Greubel, Nov 20 2019
Previous Showing 11-20 of 490 results. Next