cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 89 results. Next

A126170 Larger member of an infinitary amicable pair.

Original entry on oeis.org

126, 846, 1260, 7920, 8460, 11760, 10856, 14595, 17700, 43632, 45888, 49308, 83142, 62700, 71145, 73962, 96576, 83904, 107550, 88730, 178800, 112672, 131100, 125856, 168730, 149952, 196650, 203432, 206752, 224928, 306612, 365700, 399592, 419256, 460640, 548550
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(5)=8460 because the fifth infinitary amicable pair is (5940,8460) and 8460 is its largest member.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[Last[data4[[k]]], {k, 1, Length[data4]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of n for which isigma(m)=isigma(n)=m+n and n>m.

Extensions

a(33)-a(36) from Amiram Eldar, Jan 22 2019

A063947 Infinitary harmonic numbers: harmonic mean of infinitary divisors is an integer.

Original entry on oeis.org

1, 6, 45, 60, 90, 270, 420, 630, 2970, 5460, 8190, 9100, 15925, 27300, 36720, 40950, 46494, 54600, 81900, 95550, 136500, 163800, 172900, 204750, 232470, 245700, 257040, 409500, 464940, 491400, 646425, 716625, 790398, 791700, 819000, 900900
Offset: 1

Views

Author

Wouter Meeussen, Sep 03 2001

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Ratio (denominator)
    import Data.List (genericLength)
    a063947 n = a063947_list !! (n-1)
    a063947_list = filter ((== 1) . denominator . hm . a077609_row) [1..]
       where hm xs = genericLength xs / sum (map (recip . fromIntegral) xs)
    -- Reinhard Zumkeller, Jul 10 2013
  • Mathematica
    bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence @@ ({0, #} & /@ Union[ (2^Range[ 0, Floor[ Log[ 2, k ] ] ] ) Reverse[ IntegerDigits[ k, 2 ] ] ] ) ] ] ]; 1 + Flatten[ Position[ Table[ (Length[ # ] /(Plus @@ (1/#)) &)@ (Apply[ Times, (First[ it ] ^ (# /. z -> List)) ] & /@ Flatten[ Outer[ z, Sequence @@ (bitty /@ Last[ it = Transpose[ FactorInteger[ k ] ] ] ), 1 ] ]), {k, 2, 2^22 + 1} ], Integer ] ] (* _Robert G. Wilson v, Sep 04 2001 *)

Extensions

More terms from David W. Wilson, Sep 04 2001

A348271 a(n) is the sum of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 8, 0, 0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 0, 5, 0, 0, 16, 0, 0, 0, 12, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 24, 18, 0, 0, 56, 7, 15, 0, 28, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 24, 42, 0, 0, 0, 36, 0, 0, 0, 45, 0, 0, 20, 40, 0, 0, 0, 84, 39
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			a(12) = 8 since 12 has 2 noninfinitary divisors, 2 and 6, and 2 + 6 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; a[n_]:= DivisorSigma[1,n] - isigma[n]; Array[a, 100]

Formula

a(n) = A000203(n) - A049417(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).

A127661 Lengths of the infinitary aliquot sequences.

Original entry on oeis.org

2, 3, 3, 3, 3, 1, 3, 4, 3, 5, 3, 5, 3, 6, 4, 3, 3, 6, 3, 6, 4, 7, 3, 8, 3, 4, 4, 6, 3, 6, 3, 4, 5, 7, 4, 7, 3, 8, 4, 8, 3, 5, 3, 4, 5, 5, 3, 7, 3, 7, 5, 7, 3, 4, 4, 6, 4, 5, 3, 1, 3, 8, 4, 5, 4, 3, 3, 8, 5, 10, 3, 3, 3, 9, 4, 9, 4, 2, 3, 8, 3, 5, 3, 10, 4, 6, 6, 8, 3, 1, 5, 7, 5, 8, 4, 9, 3, 8, 5, 7
Offset: 1

Views

Author

Ant King, Jan 26 2007

Keywords

Comments

An infinitary aliquot sequence is defined by the map x->A049417(x)-x. The map usually terminates with a zero, but may enter cycles (if n in A127662 for example).
The length of an infinitary aliquot sequence is defined to be the length of its transient part + the length of its terminal cycle.
The value of a(840) starting the infinitary aliquot sequence 840 -> 2040 -> 4440 -> 9240 -> 25320,... is >1500. - R. J. Mathar, Oct 05 2017

Examples

			a(4)=3 because the infinitary aliquot sequence generated by 4 is 4 -> 1 -> 0 and it has length 3.
a(6) = 1 because 6 -> 6 -> 6 ->... enters a cycle after 1 term.
a(8) = 4 because 8 -> 7 -> 1 -> 0 terminates after 4 terms.
a(30) = 6 because 30 ->42 -> 54 -> 66 -> 78 -> 90 -> 90 -> 90 -> ...enters a cycle after 6 terms.
a(126)=2 because 126 -> 114 -> 126 enters a cycle after 2 terms.
		

Crossrefs

Programs

  • Maple
    # Uses code snippets of A049417
    A127661 := proc(n)
        local trac,x;
        x := n ;
        trac := [x] ;
        while true do
            x := A049417(x)-trac[-1] ;
            if x = 0 then
                return 1+nops(trac) ;
            elif x in trac then
                return nops(trac) ;
            end if;
            trac := [op(trac),x] ;
        end do:
    end proc:
    seq(A127661(n),n=1..100) ; # R. J. Mathar, Oct 05 2017
  • Mathematica
    ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],?(And@@#&),{1}]] ]] ]; properinfinitarydivisorsum[k]:=Plus@@InfinitaryDivisors[k]-k;g[n_] := If[n > 0,properinfinitarydivisorsum[n], 0];iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]];Length[iTrajectory[ # ]] &/@ Range[100]
    (* Second program: *)
    A049417[n_] := If[n == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] // Total;
    A127661[n_] := Module[{trac, x}, x = n; trac = {x}; While[True, x = A049417[x] - trac[[-1]]; If[x == 0, Return[1 + Length[trac]], If[MemberQ[trac, x], Return[Length[trac]]]]; trac = Append[trac, x]]];
    Table[A127661[n], {n, 1, 100}] (* Jean-François Alcover, Aug 28 2023, after R. J. Mathar *)

A244963 a(n) = sigma(n) - n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 4, 0, 0, 0, 7, 0, 3, 0, 6, 0, 0, 0, 12, 1, 0, 4, 8, 0, 0, 0, 15, 0, 0, 0, 19, 0, 0, 0, 18, 0, 0, 0, 12, 6, 0, 0, 28, 1, 3, 0, 14, 0, 12, 0, 24, 0, 0, 0, 24, 0, 0, 8, 31, 0, 0, 0, 18, 0, 0, 0, 51, 0, 0, 4, 20, 0, 0, 0, 42, 13
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2014

Keywords

Comments

a(n) = 0 if and only if n is a squarefree number (A005117), otherwise a(n) > 0.
If n is semiprime, then a(n) = 1+floor(sqrt(n))-ceiling(sqrt(n)). - Wesley Ivan Hurt, Dec 25 2016

Crossrefs

Cf. A000203 (sigma), A001615 (Dedekind psi), A005117 (positions of zeros), A013929, A049417.

Programs

Formula

a(n) = A000203(n) - A001615(n).
Sum_{k=1..n} a(k) ~ c*n^2 + O(n*log(n)), where c = Pi^2/12 - 15/(2*Pi^2) = 0.062558... - Amiram Eldar, Mar 02 2021

A327635 Numbers k such that both k and k+1 are infinitary abundant numbers (A129656).

Original entry on oeis.org

21735, 21944, 43064, 58695, 188055, 262184, 414855, 520695, 567944, 611415, 687015, 764504, 792855, 809864, 812889, 833624, 874664, 911624, 945944, 976184, 991304, 1019655, 1026375, 1065015, 1073709, 1157624, 1201095, 1218944, 1248344, 1254015, 1272375, 1272704
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The least k such that k, k+1 and k+2 are all infinitary abundant numbers is a(75976) = 2666847104.

Examples

			21735 is in the sequence since both 21735 and 21736 are infinitary abundant: isigma(21735) = 46080 > 2 * 21735, and isigma(21736) = 50400 > 2 * 21736 (isigma is the sum of infinitary divisors, A049417).
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); abQ[n_] := isigma[n] > 2n; s={}; ab1 = 0; Do[ab2 = abQ[n]; If[ab1 && ab2, AppendTo[s, n-1]]; ab1 = ab2, {n, 2, 10^5}]; s

A074847 Sum of 4-infinitary divisors of n: if n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 17, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 51, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 68, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 119, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 10 2002

Keywords

Comments

If we group the exponents e in the Bower-Harris formula into the sets with d_k=0, 1, 2 and 3, we see that every n has a unique representation of the form n=prod q_i *prod (r_j)^2 *prod (s_k)^3, where each of q_i, r_j, s_k is a prime power of the form p^(k^4), p prime, k>=0. Using this representation, a(n)=prod (q_i+1)prod ((r_j)^2+r_j+1)prod ((s_k)^3+(s_k)^2+s_k+1) by simple expansion of the quotient on the right hand side of the Bower-Harris formula. - Vladimir Shevelev, May 08 2013

Examples

			2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
		

Crossrefs

Cf. A049417 (2-infinitary), A049418 (3-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    following Bower and Harris, cf. A049418:
    a074847 1 = 1
    a074847 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000302_list $ map (+ 1) $ a030386_row e)
               (map (subtract 1 . (p ^)) a000302_list)
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A074847 := proc(n) option remember; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1,op(1,ifa)) ; e := op(2,op(1,ifa)) ; d := convert(e,base,4) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1,d))*4^k)-1)/(p^(4^k)-1) ; end do: else for d in ifa do a := a*procname( op(1,d)^op(2,d)) ; end do: return a; end if; end proc:
    seq(A074847(n),n=1..100) ; # R. J. Mathar, Oct 06 2010
  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 4]}, m = Length[d]; Product[(p^((d[[j]] + 1)*4^(m - j)) - 1)/(p^(4^(m - j)) - 1), {j, 1, m}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)

Formula

Multiplicative. If e = sum_{k >= 0} d_k 4^k (base 4 representation), then a(p^e) = prod_{k >= 0} (p^(4^k*{d_k+1}) - 1)/(p^(4^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005

Extensions

More terms from R. J. Mathar, Oct 06 2010

A306984 Infinitary weird numbers: infinitary abundant numbers (A129656) that are not infinitary pseudoperfect numbers (A306983).

Original entry on oeis.org

70, 4030, 5390, 5830, 7192, 7400, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 11830, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17272, 17570, 17920, 17990, 18410, 18830, 18970, 19390, 19670
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

Differs from bi-unitary weird numbers from n >= 32 (a(32) = 17920 is not bi-unitary weird).

Crossrefs

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[ x ] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ;s = {}; Do[d = Most[idivs[n]]; If[Total[d]
    				

A049418 3-i-sigma(n): sum of 3-infinitary divisors of n: if n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-i-divisor of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 9, 13, 18, 12, 28, 14, 24, 24, 27, 18, 39, 20, 42, 32, 36, 24, 36, 31, 42, 28, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 54, 42, 96, 44, 84, 78, 72, 48, 108, 57, 93, 72, 98, 54, 84, 72, 72, 80, 90, 60, 168, 62, 96, 104, 73, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Keywords

Examples

			Let n = 28 = 2^2*7. Then a(n) = (2^2 + 2 + 1)*(7 + 1) = 56. - _Vladimir Shevelev_, May 07 2013
		

Crossrefs

Cf. A049417 (2-infinitary), A074847 (4-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    following Bower and Harris:
    a049418 1 = 1
    a049418 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000244_list $ map (+ 1) $ a030341_row e)
               (map (subtract 1 . (p ^)) a000244_list)
    -- Reinhard Zumkeller, Sep 18 2015
    
  • Maple
    A049418 := proc(n) option remember; local ifa,a,p,e,d,k ; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1,op(1,ifa)) ; e := op(2,op(1,ifa)) ; d := convert(e,base,3) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1,d))*3^k)-1)/(p^(3^k)-1) ; end do: else for d in ifa do a := a*procname( op(1,d)^op(2,d)) ; end do: return a; end if; end proc:
    seq(A049418(n),n=1..40) ; # R. J. Mathar, Oct 06 2010
  • Mathematica
    A049418[n_] := Module[{ifa = FactorInteger[n], a = 1, p, e, d, k}, If[ Length[ifa] == 1, p = ifa[[1, 1]]; e = ifa[[1, 2]]; d = Reverse[ IntegerDigits[e, 3] ]; For[k = 1, k <= Length[d], k++, a = a*(p^((1 + d[[k]])*3^(k - 1)) - 1)/(p^(3^(k - 1)) - 1)], Do[ a = a*A049418[ d[[1]]^d[[2]] ], {d, ifa}]]; Return[a] ]; A049418[1] = 1; Table[ A049418[n] , {n, 1, 69}] (* Jean-François Alcover, Jan 03 2012, after R. J. Mathar *)
  • PARI
    apply( {A049418(n)=vecprod([prod(k=1,#n=digits(f[2],3),(f[1]^(3^(#n-k)*(n[k]+1))-1)\(f[1]^3^(#n-k)-1))|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Sep 21 2022

Formula

Multiplicative with a(p^e) = prod_{k >= 0} (p^(3^k*{d_k+1}) - 1)/(p^(3^k) - 1), where e = sum_{k >= 0} d_k 3^k (base 3 representation). - Christian G. Bower and Mitch Harris, May 20 2005. [Edited by M. F. Hasler, Sep 21 2022]
Denote P_3 = {p^3^k}, k = 0, 1, ..., p runs primes. Then every n has a unique representation of the form n = prod q_i prod (r_j)^2, where q_i, r_j are distinct elements of P_3. Using this representation, we have a(n) = prod (q_i+1)*prod ((r_j)^2+r_j+1). - Vladimir Shevelev, May 07 2013

Extensions

More terms from Naohiro Nomoto, Sep 10 2001

A097863 Sum of 5-infinitary divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 33, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 99, 84, 144, 68, 126, 96, 144, 72, 195, 74, 114, 124
Offset: 1

Views

Author

Keywords

Comments

If n=Product p_i^r_i and d=Product p_i^s_i, each s_i has a digit a<=b in its 5-ary expansion everywhere that the corresponding r_i has a digit b, then d is a 5-infinitary-divisor of n.

Examples

			a(32) = a(2^10) = 2^10 + 2^0 = 32 + 1 = 33, in 5-ary expansion. This is the first term which is different from sigma(n).
		

Crossrefs

Programs

  • Haskell
    following Bower and Harris, cf. A049418:
    a097863 1 = 1
    a097863 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000351_list $ map (+ 1) $ a031235_row e)
               (map (subtract 1 . (p ^)) a000351_list)
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A097863 := proc(n) option remember; local ifa, a, p, e, d, k ; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1, op(1, ifa)) ; e := op(2, op(1, ifa)) ; d := convert(e, base, 5) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1, d))*5^k)-1)/(p^(5^k)-1) ; end do: else for d in ifa do a := a*procname( op(1, d)^op(2, d)) ; end do: return a; end if; end proc:
  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 5]}, m = Length[d]; Product[(p^((d[[j]] + 1)*5^(m - j)) - 1)/(p^(5^(m - j)) - 1), {j, 1, m}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)

Formula

Denote by P_5={p^5^k} the two-parameter set when k=0,1,... and p runs prime values. Then every n has a unique representation of the form n=prod q_i prod (r_j)^2 prod (s_k)^3 prod (t_m)^4, where q_i, r_j, s_k, t_m are distinct elements of P_5. Using this representation, we have a(n)=prod (q_i+1)prod ((r_j)^2+r_j+1)prod ((s_k)^3+(s_k)^2+s_k+1) prod ((t_m)^4+(t_m)^3+(t_m)^2+t_m+1). - Vladimir Shevelev, May 08 2013
Previous Showing 31-40 of 89 results. Next