cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A001915 Primes p such that the congruence 2^x == 3 (mod p) is solvable.

Original entry on oeis.org

2, 5, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 83, 97, 101, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 211, 227, 239, 263, 269, 293, 307, 311, 313, 317, 347, 349, 359, 373, 379, 383, 389, 409, 419, 421, 431, 443, 461, 467, 479, 491, 499, 503, 509, 523
Offset: 1

Views

Author

Keywords

Comments

The sequence is known to be infinite [Polya] - thanks to Pieter Moree and Daniel Stefankovic for this comment, Dec 21 2009.

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 63.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N:= 1000: # to search the first N primes
    {2} union select(t -> numtheory[mlog](3,2,p) <> FAIL, {seq(ithprime(n),n=2..N)});
    # Robert Israel, Feb 15 2013
  • Mathematica
    Select[Prime[Range[120]], MemberQ[Table[Mod[2^x-3, #], {x, 0, #}], 0]&] (* Jean-François Alcover, Aug 29 2011 *)
    Monitor[aaa=Reap[Do[p=Prime[m];sol=MultiplicativeOrder[2,p,{3}];If[IntegerQ[sol],Sow[p]],{m,1000}]],{m}];tmp=Transpose[{1+Range[Length[aaa[[2,1]]]],aaa[[2,1]]}] (* Xianwen Wang, Jul 22 2025 *)
  • PARI
    isok(p) = isprime(p) && sum(k=0, (p-1), Mod(2, p)^k == 3); \\ Michel Marcus, Mar 12 2017
    
  • PARI
    is(n)=isprime(n) && (n==2 || #znlog(3, Mod(2, n))) \\ Charles R Greathouse IV, Aug 15 2018

Extensions

Better description from Joe K. Crump (joecr(AT)carolina.rr.com), Dec 11 2000
More terms from David W. Wilson, Dec 12 2000

A277554 Positive integers n such that 7^n == 3 (mod n).

Original entry on oeis.org

1, 2, 46, 2227, 6684830083, 12827743861, 151652531182, 155657642297, 3102126273955, 11006109076099, 50473807426174, 172794904196354
Offset: 1

Views

Author

Max Alekseyev, Oct 19 2016

Keywords

Comments

No other terms below 10^15.

Crossrefs

Cf. Solutions to 7^n == k (mod n): A277371 (k=-3), A277370 (k=-2), A015954 (k=-1), A067947 (k=1), A277401 (k=2).
Cf. Solutions to b^n == 3 (mod n): A050259 (b=2), A130422 (b=4), A123061 (b=5), A116629 (b=13).

Programs

A296370 Numbers m such that 2^m == 3/2 (mod m).

Original entry on oeis.org

1, 111481, 465793, 79036177, 1781269903307, 250369632905747, 708229497085909, 15673900819204067
Offset: 1

Views

Author

Max Alekseyev, Dec 11 2017

Keywords

Comments

Equivalently, 2^(m+1) == 3 (mod m).
Also, numbers m such that 2^(m+1) - 2 is a Fermat pseudoprime base 2, i.e., 2^(m+1) - 2 belongs to A015919 and A006935.
Some larger terms (may be not in order): 2338990834231272653581, 341569682872976768698011746141903924998969680637.

Crossrefs

Solutions to 2^m == k (mod m): this sequence (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12)

Programs

  • Mathematica
    Select[Range[10^6], Divisible[2^(# + 1) - 3, #] &] (* Robert Price, Oct 11 2018 *)

Formula

a(n) = A296104(n) - 1.

A123988 Primes p such that 2^x == 3 (mod p) has no solutions.

Original entry on oeis.org

3, 7, 17, 31, 41, 43, 73, 79, 89, 103, 109, 113, 127, 137, 151, 157, 199, 223, 229, 233, 241, 251, 257, 271, 277, 281, 283, 331, 337, 353, 367, 397, 401, 433, 439, 449, 457, 463, 487, 521, 569, 571, 593, 601, 607, 617, 631, 641, 673, 683, 691, 727, 733, 739, 751, 761, 809, 811, 823, 857, 881, 911
Offset: 1

Views

Author

Artur Jasinski, Nov 23 2006

Keywords

Comments

Such primes cannot divide solutions to 2^m == 3 (mod m) (see A050259).

Crossrefs

Cf. A050259, A001915 (complement in the primes).

Programs

  • Magma
    lst:=[3]; for p in [5..911 by 2] do if IsPrime(p) then t:=0; e:=Ceiling(Log(2, p+1)); for x in [e..p-2] do if 2^x mod p eq 3 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, p); end if; end if; end for; lst; // Arkadiusz Wesolowski, Jan 12 2021

Extensions

Edited by Max Alekseyev, Jan 14 2007
Corrected by Max Alekseyev, Jun 08 2011
Corrected by Arkadiusz Wesolowski, Jan 12 2021

A296104 Numbers k such that 2^k == 3 (mod k-1).

Original entry on oeis.org

2, 111482, 465794, 79036178, 1781269903308, 250369632905748, 708229497085910, 15673900819204068
Offset: 1

Views

Author

Krzysztof Ziemak and Max Alekseyev, Dec 04 2017

Keywords

Comments

Also, numbers k such that 2^k - 2 is a Fermat pseudoprime, i.e., 2^k - 2 belongs to A015919 and A006935.
a(3) was found by McDaniel (1989).
Some larger terms (maybe not in order): 2338990834231272653582, 341569682872976768698011746141903924998969680638.
Discovered huge even PSP(2) numbers of the form 2*M(n), where n=p*q and M(n)=2^n-1, ensure that the following numbers are also even pseudoprimes of the form 2*M(p)*M(q): 2*M(37)*M(12589), 2*M(131)*M(17854891864360859951), 2*M(179)*M(1398713032993), 2*M(2111)*M(335494787819), 2*M(35267)*M(50508121). - Krzysztof Ziemak, Jan 01 2018

Crossrefs

Programs

  • Mathematica
    k = 2; lst = {2}; While[k < 1000000001, If[ PowerMod[2, k, k -1] == 3, AppendTo[lst, k]]; k += 10; If[ PowerMod[2, k, k -1] == 3, AppendTo[lst, k]]; k += 2]; lst (* Robert G. Wilson v, Jan 01 2018 *)
  • PARI
    is_A296104(n) = Mod(2, n-1)^n == 3; \\ Iain Fox, Dec 07 2017
  • Python
    A296104_list = [n for n in range(2,10**6) if pow(2,n,n-1) == 3 % (n-1)] # Chai Wah Wu, Dec 06 2017
    

Formula

a(n) = A296370(n) + 1.

A127437 Duplicate of A001915.

Original entry on oeis.org

2, 5, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 83, 97, 101, 107, 131, 139, 149, 163, 167, 173, 179, 181, 191, 193, 197, 211, 227, 239, 263, 269, 293, 307, 311, 313, 317, 347, 349, 359, 373, 379, 383, 389, 409, 419, 421, 431, 443, 461, 467, 479, 491, 499, 503, 509, 523, 541, 547, 557, 563, 577
Offset: 1

Views

Author

Max Alekseyev, Jan 14 2007

Keywords

Comments

Potential prime divisors of solutions to 2^m == 3 (mod m) (see A050259).
Minimal nonnegative solutions to 2^x == 3 (mod a(n)) are given in A127438.

Crossrefs

Cf. A050259, A123988 (complement in the primes).

Programs

  • PARI
    forprime(p=5,1000, g=znprimroot(p); u=znlog(Mod(2,p),g); v=znlog(Mod(3,p),g); if( v%u==0, print1(p,", "); ))

Extensions

Corrected by Max Alekseyev, Jun 08 2011
Corrected by Arkadiusz Wesolowski, Jan 12 2021

A334634 Numbers m that divide 2^m + 11.

Original entry on oeis.org

1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1

Views

Author

Max Alekseyev, Sep 10 2020

Keywords

Comments

Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.

Crossrefs

Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).

Extensions

a(5) from Sergey Paramonov, Oct 10 2021
Previous Showing 21-27 of 27 results.