A006360
Antichains (or order ideals) in the poset 2*2*3*n or size of the distributive lattice J(2*2*3*n).
Original entry on oeis.org
1, 50, 887, 8790, 59542, 307960, 1301610, 4701698, 14975675, 43025762, 113414717, 277904900, 639562508, 1393844960, 2896063220, 5768600412, 11066514565, 20526933442, 36936277875, 64660182026, 110394412610
Offset: 0
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
- Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
- G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 9.
- Index entries for sequences related to posets.
Cf.
A000217,
A000330,
A050446,
A050447,
A006356,
A006357,
A006358,
A006359,
A000372,
A056932,
A006361,
A006362,
A056933,
A056934,
A056935,
A056936,
A056937.
A079502
Triangle T(n,k) read by rows; related to number of preorders.
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 1, 10, 24, 16, 1, 18, 79, 122, 61, 1, 31, 223, 602, 680, 272, 1, 52, 579, 2439, 4682, 4155, 1385, 1, 86, 1432, 8856, 25740, 38072, 27776, 7936, 1, 141, 3434, 30030, 124146, 272416, 326570, 202084, 50521, 1, 230, 8071, 97332
Offset: 0
Triangle T(n,k) begins:
1;
1, 2;
1, 5, 5;
1, 10, 24, 16;
1, 18, 79, 122, 61;
1, 31, 223, 602, 680, 272;
1, 52, 579, 2439, 4682, 4155, 1385;
1, 86, 1432, 8856, 25740, 38072, 27776, 7936;
- Sean A. Irvine, Table of n, a(n) for n = 0..999
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (The numbers u_r^n on page 20.)
- Germain Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)
- Igor Pak, Boris Shapiro, Ilya Smirnov, and Ken-ichi Yoshida, Hilbert-Kunz multiplicity of quadrics via the Ehrhart theory, Stockholm Univ. (Sweden, 2025). See pp. 5, 10.
-
t[n_, m_] := t[n, m] = If[m == 0, 1, t[n, m - 1] + Sum[t[2 k, m - 1] t[n - 1 - 2 k, m], {k, 0, (n - 1)/2}]]; Map[Function[s, Rest@ Reverse@ Map[Abs@ Fold[#2 - #1 &, Reverse@ Take[s, #]] &, Range@ Length@ s]]@ Reverse@ Map[First, NestList[Differences@ # &, {First@ #}~Join~Differences@ #, Length@ # - 2]] &, Table[t[n, k], {n, 2, 11}, {k, 0, n}]] (* Michael De Vlieger, Mar 13 2017, after Jean-François Alcover at A050447 *)
A276312
Number of up-down sequences of length n and values in {1,2,...,n}.
Original entry on oeis.org
1, 1, 1, 5, 31, 246, 2353, 26585, 345775, 5094220, 83833256, 1524414737, 30353430420, 656851828075, 15350023574061, 385261255931365, 10335781852020335, 295166535640444376, 8939894824857438940, 286234265613041061128, 9659753724363828753408
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 5: 121, 131, 132, 231, 232.
a(4) = 31: 1212, 1213, 1214, 1312, 1313, 1314, 1323, 1324, 1412, 1413, 1414, 1423, 1424, 1434, 2312, 2313, 2314, 2323, 2324, 2412, 2413, 2414, 2423, 2424, 2434, 3412, 3413, 3414, 3423, 3424, 3434.
-
b:= proc(n, k, t) option remember; `if`(n=0, 1,
add(b(n-1, k, k-j), j=1..t-1))
end:
a:= n-> b(n, n+1$2):
seq(a(n), n=0..25);
-
b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t-1}]];
a[n_] := b[n, n+1, n+1];
a /@ Range[0, 25] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
A276313
Number of weak up-down sequences of length n and values in {1,2,...,n}.
Original entry on oeis.org
1, 1, 3, 14, 85, 671, 6405, 72302, 940005, 13846117, 227837533, 4142793511, 82488063476, 1785049505682, 41715243815059, 1046997553798894, 28089178205661221, 802173732190546289, 24296253228394108980, 777918130180655893150, 26253270588637259772768
Offset: 0
a(0) = 1: the empty sequence.
a(1) = 1: 1.
a(2) = 3: 11, 12, 22.
a(3) = 14: 111, 121, 122, 131, 132, 133, 221, 222, 231, 232, 233, 331, 332, 333.
a(4) = 85: 1111, 1112, 1113, 1114, 1211, ..., 4423, 4424, 4433, 4434, 4444.
-
b:= proc(n, k, t) option remember; `if`(n=0, 1,
add(b(n-1, k, k-j), j=1..t))
end:
a:= n-> b(n, n+1, n):
seq(a(n), n=0..25);
-
b[n_, k_, t_] := b[n, k, t] = If[n==0, 1, Sum[b[n-1, k, k-j], {j, 1, t}]];
a[n_] := b[n, n+1, n];
Table[a[n], {n, 0, 25}](* Jean-François Alcover, May 18 2017, translated from Maple *)
A108582
n appears n^3 times.
Original entry on oeis.org
1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
Offset: 1
-
Flatten @ Table[ Table[k, {k^3}], {k, 5}] (* Giovanni Resta, Jun 17 2016 *)
a[n_]:=Ceiling[1/2 (Sqrt[8 Sqrt[n]+1]-1)]
Nmax=225; Table[a[n],{n,1,Nmax}] (* Boris Putievskiy, Jun 19 2024 *)
-
from sympy import integer_nthroot
def A108582(n): return (m:=integer_nthroot(k:=n<<2,4)[0])+(k>(m*(m+1))**2) # Chai Wah Wu, Nov 04 2024
A205492
Expansion of (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)).
Original entry on oeis.org
1, 7, 31, 109, 334, 937, 2475, 6267, 15393, 36976, 87369, 203915, 471546, 1082849, 2473535, 5627684, 12765052, 28887838, 65260270, 147233926, 331842395, 747355066, 1682185342, 3784718431, 8512408455, 19141037360, 43032743620
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. E. Jeffery, Unit-primitive matrices
- Index entries for linear recurrences with constant coefficients, signature (7,-17,12,15,-26,3,13,-5,-2,1).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)) )); // G. C. Greubel, Jan 04 2020
-
seq(coeff(series((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 04 2020
-
LinearRecurrence[{7,-17,12,15,-26,3,13,-5,-2,1},{1,7,31,109,334,937,2475,6267, 15393,36976},30] (* Harvey P. Dale, Mar 26 2013 *)
CoefficientList[Series[(1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3)), {x,0,30}], x] (* G. C. Greubel, Jan 04 2020 *)
-
my(x='x+O('x^30)); Vec((1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+ x^3))) \\ G. C. Greubel, Jan 04 2020
-
def A205492_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-x^2-x^3-x^4+x^5)/((1-x)^3*(1-x-x^2)^2*(1-2*x-x^2+x^3)) ).list()
A205492_list(30) # G. C. Greubel, Jan 04 2020
A373424
Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0
Generating functions of the rows:
gf0 = 1;
gf1 = -1/( x-1);
gf2 = 1/(-x-1/(-x-1));
gf3 = -1/( x-1/( x-1/( x-1)));
gf4 = 1/(-x-1/(-x-1/(-x-1/(-x-1))));
gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1)))));
gf6 = 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1))))));
...
Array A(n, k) starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045
[3] 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, ... A006356
[4] 1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, ... A006357
[5] 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, ... A006358
[6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ... A006359
A000027,A000330, A085461, A244881, ...
A000217, A006322, A108675, ...
.
Triangle T(n, k) = A(n - k, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 1, 0;
[4] 1, 3, 3, 1, 0;
[5] 1, 4, 6, 5, 1, 0;
[6] 1, 5, 10, 14, 8, 1, 0;
-
row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then
a := x - 1; for j from 1 to n do a := x - 1 / a od: a := a - x; else
a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x;
fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
A := (n, k) -> row(n, 12)[k+1]: # array form
T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
-
def Arow(n, len):
R. = PowerSeriesRing(ZZ, len)
if n == 0: return [1] + [0]*(len - 1)
x = -x if n % 2 else x
a = x + 1
for _ in range(n):
a = x - 1 / a
a = x - a if n % 2 else a - x
return a.list()
for n in range(7): print(Arow(n, 10))
A205493
Third row or column of table A205497.
Original entry on oeis.org
1, 14, 109, 623, 2951, 12331, 47191, 169416, 579889, 1914226, 6144668, 19298724, 59579803, 181448918, 546629054, 1632497850, 4841448042, 14277423006, 41912838982, 122587133760, 357476552161, 1039922075888, 3019280091491, 8752184436454, 25337900299765
Offset: 0
A205494
Conjectured row or column n=4 of array A205497.
Original entry on oeis.org
1, 26, 334, 2951, 20641, 123216, 656683, 3217526, 14786816, 64657546, 271838823, 1107586989, 4399926007, 17122243560, 65514790830, 247212893755, 922136438698, 3406871213836, 12486569116765, 45459575562313, 164578100859837, 593025025473647, 2128399709975819, 7613495897772440
Offset: 0
A205495
Convolution related to array A205497 and to generating functions for the rows of the array form of A050446.
Original entry on oeis.org
1, 46, 937, 12331, 123216, 1019051, 7349140, 47816612, 287357460, 1622135139, 8709442871, 44899559053, 223883501478, 1086005140508, 5148332487873, 23940669359515, 109535136537197, 494307574790201, 2204762394907238, 9736270202183689, 42629974672006973
Offset: 0
Comments