A101104
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.
Original entry on oeis.org
1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1
Cecilia Rossiter, Dec 15 2004
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Dead link]
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (1).
For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
Cf.
A101095 for an expanded table and more about MagicNKZ.
-
MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)
Original Formula edited and Crossrefs table added by
Danny Rorabaugh, Apr 22 2015
A101095
Fourth difference of fifth powers (A000584).
Original entry on oeis.org
1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Cecilia Rossiter, Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Archive Machine link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883
- Eric Weisstein, Link to section of MathWorld: Eulerian Number
- Eric Weisstein, Link to section of MathWorld: Nexus number
- Eric Weisstein, Link to section of MathWorld: Finite Differences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 14 |
A010966 | ....... | ....... | ....... | ....... |
A254872 | ....... | .......
--------------------------------------------------------------------------------------
-
I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
-
a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
-
[1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by
Danny Rorabaugh, Apr 23 2015
A121306
Array read by antidiagonals: a(m,n) = a(m,n-1)+a(m-1,n) but with initialization values a(0,0)=0, a(m>=1,0)=1, a(0,1)=1, a(0,n>1)=0.
Original entry on oeis.org
2, 2, 3, 2, 5, 4, 2, 7, 9, 5, 2, 9, 16, 14, 6, 2, 11, 25, 30, 20, 7, 2, 13, 36, 55, 50, 27, 8, 2, 15, 49, 91, 105, 77, 35, 9, 2, 17, 64, 140, 196, 182, 112, 44, 10, 19, 81, 204, 336, 378, 294, 156, 54, 100, 285, 540, 714, 672, 450, 210, 385, 825, 1254, 1386, 1122
Offset: 0
Array begins
2 2 2 2 2 2 2 2 2 ...
3 5 7 9 11 13 15 17 19 ...
4 9 16 25 36 49 64 81 100 ...
5 14 30 55 91 140 204 285 385 ...
6 20 50 105 196 336 540 825 1210 ...
7 27 77 182 378 714 1254 2079 3289 ...
Cf.
A119800,
A007318,
A006527,
A005408,
A000290,
A000330,
A002415,
A005585,
A040977,
A050486,
A053347,
A000027,
A000096,
A005581,
A005582,
A005583,
A005584.
-
=Z(-1)S+ZS(-1). The very first row (not included into the table) contains the initialization values: a(0,1)=1, a(0,n>=2)=0. The very first column (not included into the table) contains the initialization values: a(m>=1,0)=1. The value a(0,0)=0 does not enter into the table.
Original entry on oeis.org
1, 1, 6, 12, 120, 360, 5040, 20160, 362880, 1814400, 39916800, 239500800, 6227020800, 43589145600, 1307674368000, 10461394944000, 355687428096000, 3201186852864000, 121645100408832000, 1216451004088320000, 51090942171709440000, 562000363888803840000
Offset: 1
Cf.
A000290,
A000330,
A002415,
A005408,
A005585,
A029651,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
A208509
Triangle of coefficients of polynomials v(n,x) jointly generated with A208508; see the Formula section.
Original entry on oeis.org
1, 3, 5, 1, 7, 5, 9, 14, 1, 11, 30, 7, 13, 55, 27, 1, 15, 91, 77, 9, 17, 140, 182, 44, 1, 19, 204, 378, 156, 11, 21, 285, 714, 450, 65, 1, 23, 385, 1254, 1122, 275, 13, 25, 506, 2079, 2508, 935, 90, 1, 27, 650, 3289, 5148, 2717, 442, 15, 29, 819, 5005, 9867
Offset: 1
First five rows:
1
3
5 1
7 5
9 14 1
First five polynomials v(n,x):
1
3
5 + x
7 + 5x
9 + 14x + x^2
Alternating row sums, v(n,-1):
A090131.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208508 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208509 *)
A038164
Expansion of 1/((1-x)*(1-x^2))^4.
Original entry on oeis.org
1, 4, 14, 36, 85, 176, 344, 624, 1086, 1800, 2892, 4488, 6798, 10032, 14520, 20592, 28743, 39468, 53482, 71500, 94523, 123552, 159952, 205088, 260780, 328848, 411672, 511632, 631788, 775200, 945744, 1147296, 1384701, 1662804
Offset: 0
- M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv preprint arXiv:1303.0920 [math.RA], 2013.
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-12,17,8,-28,8,17,-12,-2,4,-1).
-
CoefficientList[Series[1/((1-x)(1-x^2))^4,{x,0,40}],x] (* or *) LinearRecurrence[ {4,-2,-12,17,8,-28,8,17,-12,-2,4,-1},{1,4,14,36,85,176,344,624,1086,1800,2892,4488},40] (* Harvey P. Dale, Jul 02 2011 *)
-
Vec(1/((1-x)*(1-x^2))^4 + O(x^40)) \\ Michel Marcus, Jan 13 2024
A207543
Triangle read by rows, expansion of (1+y*x)/(1-2*y*x+y*(y-1)*x^2).
Original entry on oeis.org
1, 0, 3, 0, 1, 5, 0, 0, 5, 7, 0, 0, 1, 14, 9, 0, 0, 0, 7, 30, 11, 0, 0, 0, 1, 27, 55, 13, 0, 0, 0, 0, 9, 77, 91, 15, 0, 0, 0, 0, 1, 44, 182, 140, 17, 0, 0, 0, 0, 0, 11, 156, 378, 204, 19, 0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21, 0
Offset: 0
Triangle begins :
1
0, 3
0, 1, 5
0, 0, 5, 7
0, 0, 1, 14, 9
0, 0, 0, 7, 30, 11
0, 0, 0, 1, 27, 55, 13
0, 0, 0, 0, 9, 77, 91, 15
0, 0, 0, 0, 1, 44, 182, 140, 17
0, 0, 0, 0, 0, 11, 156, 378, 204, 19
0, 0, 0, 0, 0, 1, 65, 450, 714, 285, 21
0, 0, 0, 0, 0, 0, 13, 275, 1122, 1254, 385, 23
Cf.
A082985 which is another version of this triangle.
-
s := (1+y*x)/(1-2*y*x+y*(y-1)*x^2): t := series(s,x,12):
seq(print(seq(coeff(coeff(t,x,n),y,m),m=0..n)),n=0..11); # Peter Luschny, Aug 17 2016
New name using a formula of the author from
Peter Luschny, Aug 17 2016
A129710
Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.
Original entry on oeis.org
1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0
T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
1;
2;
2, 1;
2, 3;
2, 5, 1;
2, 7, 4;
2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
1;
2, 0;
2, 1, 0;
2, 3, 0, 0;
2, 5, 1, 0, 0;
2, 7, 4, 0, 0, 0;
2, 9, 9, 1, 0, 0, 0;
Columns:
A040000,
A005408,
A000290,
A000330,
A002415,
A005585,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
-
T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)
A259775
Stepped path in P(k,n) array of k-th partial sums of squares (A000290).
Original entry on oeis.org
1, 5, 6, 20, 27, 77, 112, 294, 450, 1122, 1782, 4290, 7007, 16445, 27456, 63206, 107406, 243542, 419900, 940576, 1641486, 3640210, 6418656, 14115100, 25110020, 54826020, 98285670, 213286590, 384942375
Offset: 1
The array of k-th partial sums of squares begins:
[1], [5], 14, 30, 55, 91, ... A000330
1, [6], [20], 50, 105, 196, ... A002415
1, 7, [27], [77], 182, 378, ... A005585
1, 8, 35, [112], [294], 672, ... A040977
1, 9, 44, 156, [450], [1122], ... A050486
1, 10, 54, 210, 660, [1782], ... A053347
This is essentially A110813 without its first two columns.
-
Table[DifferenceRoot[Function[{a, n}, {(-9168 - 14432*n - 8412*n^2 - 2152*n^3 - 204*n^4)*a[n] +(-1332 - 1902*n - 792*n^2 - 102*n^3)*a[1 + n] + (2100 + 3884*n + 2493*n^2 + 640*n^3 + 51*n^4)*a[2 + n] == 0, a[1] == 1 , a[2] == 5}]][n], {n, 29}]
A266561
12-dimensional square numbers.
Original entry on oeis.org
1, 14, 104, 546, 2275, 8008, 24752, 68952, 176358, 419900, 940576, 1998724, 4056234, 7904456, 14858000, 27041560, 47805615, 82317690, 138389160, 227613750, 366913365, 580610160, 903171360, 1382805840, 2086129500, 3104160696, 4559958144, 6618272584
Offset: 0
-
[Binomial(n+11,11)*(n+6)/6: n in [0..40]]; // Vincenzo Librandi, Jan 01 2016
-
CoefficientList[Series[(1 + x)/(1 - x)^13, {x, 0, 33}], x] (* Vincenzo Librandi, Jan 01 2016 *)
Comments