cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A325264 Numbers whose omega-sequence sums to 7.

Original entry on oeis.org

30, 36, 42, 64, 66, 70, 78, 100, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 196, 222, 225, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their prime indices and omega-sequences begins:
   30: {1,2,3} (3,3,1)
   36: {1,1,2,2} (4,2,1)
   42: {1,2,4} (3,3,1)
   64: {1,1,1,1,1,1} (6,1)
   66: {1,2,5} (3,3,1)
   70: {1,3,4} (3,3,1)
   78: {1,2,6} (3,3,1)
  100: {1,1,3,3} (4,2,1)
  102: {1,2,7} (3,3,1)
  105: {2,3,4} (3,3,1)
  110: {1,3,5} (3,3,1)
  114: {1,2,8} (3,3,1)
  130: {1,3,6} (3,3,1)
  138: {1,2,9} (3,3,1)
  154: {1,4,5} (3,3,1)
  165: {2,3,5} (3,3,1)
  170: {1,3,7} (3,3,1)
  174: {1,2,10} (3,3,1)
  182: {1,4,6} (3,3,1)
  186: {1,2,11} (3,3,1)
  190: {1,3,8} (3,3,1)
  195: {2,3,6} (3,3,1)
  196: {1,1,4,4} (4,2,1)
		

Crossrefs

Positions of 7's in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]==7&]

A132214 Numbers that are sums of seventh powers of two distinct primes.

Original entry on oeis.org

2315, 78253, 80312, 823671, 825730, 901668, 19487299, 19489358, 19565296, 20310714, 62748645, 62750704, 62826642, 63572060, 82235688, 410338801, 410340860, 410416798, 411162216, 429825844, 473087190, 893871867, 893873926
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

This is to 7th powers as A130555 is to 6th powers, A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These can never be prime, as the polynomial x^7 + y^7 factors over Z. Note however that A132215, which is the analog for eighth powers, can be prime, as seen also in A132216.

Examples

			a(1) = 2^7 + 3^7 = 2315 = 5 * 463.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, [2,seq(i,i=3..100,2)]): nP:= nops(P):
    N:= 2^7 + P[-1]^7:
    sort(convert(select(`<=`, {seq(seq(P[i]^7+P[j]^7,j=i+1..nP),i=1..nP-1)},N),list)); # Robert Israel, Jul 01 2024
  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^7 + Prime[k]^7, {n, 15}, {k, n - 1}]]], # <= Prime[15^7] &]
    Union[Total/@(Subsets[Prime[Range[10]],{2}]^7)] (* Harvey P. Dale, Jan 03 2012 *)

Formula

{A001015(A000040(i)) + A001015(A000040(j)) for i > j}.

A138405 a(n) = prime(n)^5 - prime(n)^2.

Original entry on oeis.org

28, 234, 3100, 16758, 160930, 371124, 1419568, 2475738, 6435814, 20510308, 28628190, 69342588, 115854520, 147006594, 229342798, 418192684, 714920818, 844592580, 1350120618, 1804224310, 2073066264, 3077050158, 3939033754, 5584051528, 8587330848, 10510090300
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2008

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime((n))^5 - NthPrime((n))^2: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, p^5 - p^2], {n, 1, 50}]; a
  • PARI
    forprime(p=2,1e3,print1(p^5-p^2", ")) \\ Charles R Greathouse IV, Jun 16 2011
    

Formula

a(n) = A001248(n)*(A030078(n) - 1). - Elmo R. Oliveira, Jan 14 2023
From Alois P. Heinz, Jan 17 2023: (Start)
a(n) = 2 * A138431(n).
a(n) = A050997(n) - A001248(n). (End)

A157291 Decimal expansion of Zeta(5)/Zeta(10).

Original entry on oeis.org

1, 0, 3, 5, 8, 9, 7, 4, 7, 7, 2, 7, 7, 5, 0, 0, 2, 2, 4, 3, 9, 4, 4, 9, 8, 5, 8, 7, 4, 5, 6, 0, 9, 5, 6, 8, 4, 2, 4, 7, 8, 8, 4, 2, 5, 6, 0, 7, 6, 8, 9, 4, 8, 0, 8, 2, 2, 4, 6, 6, 5, 4, 2, 3, 7, 4, 4, 6, 6, 9, 2, 5, 6, 1, 2, 4, 0, 3, 3, 7, 4, 1, 8, 9, 3, 2, 1, 5, 9, 8, 8, 3, 9, 3, 9, 0, 6, 8, 0, 1, 1, 4, 6, 3, 0
Offset: 1

Views

Author

R. J. Mathar, Feb 26 2009

Keywords

Comments

The product_{p = primes = A000040} (1+1/p^5), the fifth-power analog to A082020.

Examples

			1.035897477277500224... = (1+1/2^5)*(1+1/3^5)*(1+1/5^5)*(1+1/7^5)*...
		

Crossrefs

Programs

  • Maple
    evalf(Zeta(5)/Zeta(10)) ;
  • Mathematica
    RealDigits[Zeta[5]/Zeta[10],10,120][[1]] (* Harvey P. Dale, Apr 06 2013 *)

Formula

Equals A013663/A013668 = Product_{i>=1} (1+1/A050997(i)).
Equals Sum_{k>=1} 1/A005117(k)^5 = 1 + Sum_{k>=1} 1/A113850(k). - Amiram Eldar, May 22 2020
Equals 93555 * zeta(5) / Pi^10. - Vaclav Kotesovec, May 22 2020

A232105 Number of groups of order prime(n)^5.

Original entry on oeis.org

51, 67, 77, 83, 87, 97, 101, 107, 111, 125, 131, 145, 149, 155, 159, 173, 183, 193, 203, 207, 217, 227, 231, 245, 265, 269, 275, 279, 289, 293, 323, 327, 341, 347, 365, 371, 385, 395, 399, 413, 423, 433, 447, 457, 461, 467, 491, 515, 519, 529, 533, 543, 553
Offset: 1

Views

Author

Eric M. Schmidt, Nov 21 2013

Keywords

Crossrefs

Programs

  • GAP
    A232105 := Concatenation([51, 67], List(Filtered([5..10^5], IsPrime), p -> 61 + 2 * p + 2 * Gcd(p-1, 3) + Gcd(p-1, 4))); # Muniru A Asiru, Nov 16 2017
  • Sage
    def A232105(n) : p = nth_prime(n); return 51 if p==2 else 67 if p==3 else 61 + 2*p + 2*gcd(p - 1, 3) + gcd(p - 1, 4)
    

Formula

For a prime p > 3, the number of groups of order p^5 is 61 + 2p + 2 gcd(p - 1, 3) + gcd(p - 1, 4).

A381312 Numbers whose powerful part (A057521) is a power of a prime with an odd exponent >= 3 (A056824).

Original entry on oeis.org

8, 24, 27, 32, 40, 54, 56, 88, 96, 104, 120, 125, 128, 135, 136, 152, 160, 168, 184, 189, 224, 232, 243, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 352, 375, 376, 378, 384, 408, 416, 424, 440, 456, 459, 472, 480, 486, 488, 512, 513, 520, 536, 544
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2025

Keywords

Comments

Subsequence of A301517 and A374459 and first differs from them at n = 21. A301517(21) = A374459(21) = 216 is not a term of this sequence.
Numbers having exactly one non-unitary prime factor and its multiplicity is odd.
Numbers whose prime signature (A118914) is of the form {1, 1, ..., 2*m+1} with m >= 1, i.e., any number (including zero) of 1's and then a single odd number > 1.
The asymptotic density of this sequence is (1/zeta(2)) * Sum_{p prime} 1/((p-1)*(p+1)^2) = 0.093382464285953613312...

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = ReverseSort[FactorInteger[n][[;; , 2]]]}, e[[1]] > 1 && OddQ[e[[1]]] && (Length[e] == 1 || e[[2]] == 1)]; Select[Range[1000], q]
  • PARI
    isok(k) = if(k == 1, 0, my(e = vecsort(factor(k)[, 2], , 4)); e[1] % 2 && e[1] > 1 && (#e == 1 || e[2] == 1));

A130292 Numbers that are sums of fifth powers of two distinct primes.

Original entry on oeis.org

275, 3157, 3368, 16839, 17050, 19932, 161083, 161294, 164176, 177858, 371325, 371536, 374418, 388100, 532344, 1419889, 1420100, 1422982, 1436664, 1580908, 1791150, 2476131, 2476342, 2479224, 2492906, 2637150, 2847392, 3895956
Offset: 1

Views

Author

Jonathan Vos Post, Aug 06 2007

Keywords

Comments

This is to 5th powers as A120398 is to cubes and A130873 is to 4th powers.

Examples

			a(1) = prime(1)^5 + prime(2)^5 = 2^5 + 3^5 = 32 + 243 = 275.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^5 + Prime[k]^5, {n, 15}, {k, n - 1}]]], # <= Prime[15^5] &]

A132215 Numbers that are sums of eighth powers of two distinct primes.

Original entry on oeis.org

6817, 390881, 397186, 5765057, 5771362, 6155426, 214359137, 214365442, 214749506, 220123682, 815730977, 815737282, 816121346, 821495522, 1030089602, 6975757697, 6975764002, 6976148066, 6981522242, 7190116322, 7791488162
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

This is to 8th powers as A132214 is to 7th powers, A130555 is to 6th powers, A130292 is to fifth powers, A130873 is to 4th powers and A120398 is to cubes. These CAN be prime, as the polynomial x^8 + y^8 is irreducible over Z, as seen in A132216. The first such example is a(11) = A132216(1) = 2^8 + 13^8 = 256 + 815730721 = 815730977, which is prime.
A subset of A003380. - R. J. Mathar, May 11 2008

Examples

			a(1) = 2^8 + 3^8 = 256 + 6561 = 6817 = 17 * 401.
		

Crossrefs

Programs

  • Mathematica
    Select[Sort[ Flatten[Table[Prime[n]^8 + Prime[k]^8, {n, 15}, {k, n - 1}]]], # <= Prime[15^8] &]
    Total/@Subsets[Prime[Range[10]]^8,{2}]//Sort (* Harvey P. Dale, Jun 27 2017 *)

Formula

{A001016(A000040(i)) + A001016(A000040(j)) for i > j}.

A132216 Primes that are sums of eighth powers of two distinct primes.

Original entry on oeis.org

815730977, 124097929967680577, 6115597639891380737, 144086718355753024097, 524320466699664691937, 3377940044732998170977, 10094089678769799935777, 30706777728209453204417, 58310148000746221725857
Offset: 1

Views

Author

Jonathan Vos Post, Aug 13 2007

Keywords

Comments

These primes exist because the polynomial x^8 + y^8 is irreducible over Z. Note that 2^8 + n^8 can be prime for composite n beginning 21, 55, 69, 77, 87, 117.

Examples

			a(1) = 2^8 + 13^8 = 256 + 815730721 = 815730977, which is prime.
a(2) = 2^8 + 137^8 = 124097929967680577, which is prime.
a(3) = 2^8 + 223^8 = 6115597639891380737, which is prime.
a(4) = 2^8 + 331^8 = 144086718355753024097, which is prime.
a(5) = 2^8 + 389^8 = 524320466699664691937, which is prime.
a(6) = 2^8 + 491^8 = 3377940044732998170977, which is prime.
a(7) = 2^8 + 563^8 = 10094089678769799935777, which is prime.
		

Crossrefs

Formula

Primes in A132215. {A001016(A000040(i)) + A001016(A000040(j)) for i > j and are elements of A000040}.

Extensions

More terms from Jon E. Schoenfield, Jul 16 2010

A137489 Numbers with 26 divisors.

Original entry on oeis.org

12288, 20480, 28672, 45056, 53248, 69632, 77824, 94208, 118784, 126976, 151552, 167936, 176128, 192512, 217088, 241664, 249856, 274432, 290816, 299008, 323584, 339968, 364544, 397312, 413696, 421888, 438272, 446464, 462848, 520192, 536576
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^25 (5th powers of A050997, subset of A010813) or p*q^12, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n))=26.
Previous Showing 41-50 of 73 results. Next