cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 117 results. Next

A080683 23-smooth numbers: numbers whose prime divisors are all <= 23.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 92, 95
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Coincides for the first 111 terms with A174228 (divisors of 24!). - Bruno Berselli, Sep 24 2012

Crossrefs

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080681, A080682.

Programs

  • Magma
    [n: n in [1..100] | PrimeDivisors(n) subset PrimesUpTo(23)]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    select(t -> max(numtheory:-factorset(t)) <= 23, [$1..1000]); # Robert Israel, Jan 22 2016
  • Mathematica
    mx = 100; Sort@ Flatten@ Table[ 2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}, {d, 0, Log[7, mx/(2^a*3^b*5^c)]}, {e, 0, Log[11, mx/(2^a*3^b*5^c*7^d)]}, {f, 0, Log[13, mx/(2^a*3^b*5^c*7^d*11^e)]}, {g, 0, Log[17, mx/(2^a*3^b*5^c*7^d*11^e*13^f)]}, {h, 0, Log[19, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g)]}, {i, 0, Log[23, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h)]}] (* Robert G. Wilson v, Jan 19 2016 *)
  • PARI
    test(n)=m=n; forprime(p=2,23, while(m%p==0,m=m/p)); return(m==1)
    for(n=1,100,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=23)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=23): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 72))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A080683(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,23)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 23} p/(p-1) = (2*3*5*7*11*13*17*19*23)/(1*2*4*6*10*12*16*18*22) = 676039/110592. - Amiram Eldar, Sep 22 2020

A080681 17-smooth numbers: numbers whose prime divisors are all <= 17.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 60, 63, 64, 65, 66, 68, 70, 72, 75, 77, 78, 80, 81, 84, 85, 88, 90, 91, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Crossrefs

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080682, A080683.

Programs

  • Magma
    [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(17)]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n*17^o, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}, {o, 0, Log[17, mx/(2^i*3^j*5^k*7^l*11^m*13^n)]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    test(n)= {m=n; forprime(p=2,17, while(m%p==0,m=m/p)); return(m==1)}
    for(n=1,200,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=17)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=17): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 70))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A080681(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,17)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 17} p/(p-1) = (2*3*5*7*11*13*17)/(1*2*4*6*10*12*16) = 17017/3072. - Amiram Eldar, Sep 22 2020

A080194 7-smooth numbers which are not 5-smooth.

Original entry on oeis.org

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126, 140, 147, 168, 175, 189, 196, 210, 224, 245, 252, 280, 294, 315, 336, 343, 350, 378, 392, 420, 441, 448, 490, 504, 525, 560, 567, 588, 630, 672, 686, 700, 735, 756, 784, 840, 875, 882, 896, 945, 980
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 7*2^r*3^s*5^t*7^u with r, s, t, u >= 0.
Multiples of 7 which are members of A002473. Or multiples of 7 with the largest prime divisor < 10.
Numbers whose greatest prime factor (A006530) is 7. - M. F. Hasler, Nov 21 2018

Examples

			28 = 2^2*7 is a term but 30 = 2*3*5 is not.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[999], FactorInteger[#][[-1, 1]] == 7 &] (* Giovanni Resta, Nov 22 2018 *)
  • PARI
    A080194_list(M)={my(L=List(),a,b,c); for(r=1,logint(M\1,7), a=7^r; for(s=0, logint(M\a,3), b=a*3^s; for(t=0,logint(M\b,5), c=b*5^t; for(u=0,logint(M\c,2), listput(L,c<A051037. - Edited by M. F. Hasler, Nov 22 2018
    
  • PARI
    select( is_A080194(n)={n>1 && vecmax(factor(n,7)[,1])==7}, [0..10^3]) \\ Defines is_A080194(), used elsewhere. The select() command is a check and illustration. For longer lists, use list() above. - M. F. Hasler, Nov 21 2018
    
  • Python
    from sympy import integer_log
    def A080194(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,5)[0]+1):
                    for k in range(integer_log(r:=m//5**j,3)[0]+1):
                        c -= (r//3**k).bit_length()
            return c
        return bisection(f,n,n)*7 # Chai Wah Wu, Sep 17 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    from sympy import primerange
    def A080194gen(p=7): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield 7*v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A080194gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = 7 * A002473(n). - David A. Corneth, Nov 22 2018
Sum_{n>=1} 1/a(n) = 5/8. - Amiram Eldar, Nov 10 2020

A080193 5-smooth numbers which are not 3-smooth.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 40, 45, 50, 60, 75, 80, 90, 100, 120, 125, 135, 150, 160, 180, 200, 225, 240, 250, 270, 300, 320, 360, 375, 400, 405, 450, 480, 500, 540, 600, 625, 640, 675, 720, 750, 800, 810, 900, 960, 1000, 1080, 1125, 1200, 1215, 1250, 1280, 1350
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 2^r*3^s*5^t with r, s >= 0, t > 0.
That is, 5-smooth numbers which are multiples of 5. - Charles R Greathouse IV, Mar 19 2015

Examples

			15 = 3*5 is a term but 18 = 2*3^2 is not.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], FactorInteger[#][[-1, 1]] == 5 &] (* Amiram Eldar, Nov 10 2020 *)
  • PARI
    {m=1440; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=1, floor(log(m/b)/log(5)),z=concat(z,b*5^t)))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
    
  • PARI
    list(lim)=my(v=List(),x=1,y,z); while((x*=5)<=lim, y=x/3; while((y*=3)<=lim, z=y/2; while((z*=2)<=lim, listput(v, z)))); Set(v) \\ Charles R Greathouse IV, Mar 19 2015
    
  • Python
    from sympy import integer_log
    def A080193(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(y:=x//5**i,3)[0]+1):
                    c -= (y//3**j).bit_length()
            return c
        return bisection(f,n,n)*5 # Chai Wah Wu, Sep 16 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A080193gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield 5*v
                oldv = v
                for p in psmooth_primes:
                        heapq.heappush(h, v*p)
    print(list(islice(A080193gen(), 55))) # Michael S. Branicky, Sep 18 2024

Formula

From Amiram Eldar, Nov 10 2020: (Start)
a(n) = 5 * A051037(n).
Sum_{n>=1} 1/a(n) = 3/4. (End)

A261144 Irregular triangle of numbers that are squarefree and smooth (row n contains squarefree p-smooth numbers, where p is the n-th prime).

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42
Offset: 1

Views

Author

Jean-François Alcover, Nov 26 2015

Keywords

Comments

If we define a triangle whose n-th row consists of all squarefree numbers whose prime factors are all less than prime(k), we get this same triangle except starting with a row {1}, with offset 1. - Gus Wiseman, Aug 24 2021

Examples

			Triangle begins:
1, 2;                        squarefree and 2-smooth
1, 2, 3, 6;                  squarefree and 3-smooth
1, 2, 3, 5, 6, 10, 15, 30;
1, 2, 3, 5, 6,  7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210;
...
		

Crossrefs

Cf. A000079 (2-smooth), A003586 (3-smooth), A051037 (5-smooth), A002473 (7-smooth), A018336 (7-smooth & squarefree), A051038 (11-smooth), A087005 (11-smooth & squarefree), A080197 (13-smooth), A087006 (13-smooth & squarefree), A087007 (17-smooth & squarefree), A087008 (19-smooth & squarefree).
Row lengths are A000079.
Rightmost terms (or column k = 2^n) are A002110.
Rows are partial unions of rows of A019565.
Row n is A027750(A002110(n)), i.e., divisors of primorials.
Row sums are A054640.
Column k = 2^n-1 is A070826.
Multiplying row n by prime(n+1) gives A339195, row sums A339360.
A005117 lists squarefree numbers.
A056239 adds up prime indices, row sums of A112798.
A072047 counts prime factors of squarefree numbers.
A246867 groups squarefree numbers by Heinz weight, row sums A147655.
A329631 lists prime indices of squarefree numbers, sums A319246.
A339116 groups squarefree semiprimes by greater factor, sums A339194.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1],
          sort(map(x-> [x, x*ithprime(n)][], b(n-1))))
        end:
    T:= n-> b(n)[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    primorial[n_] := Times @@ Prime[Range[n]]; row[n_] := Select[ Divisors[ primorial[n]], SquareFreeQ]; Table[row[n], {n, 1, 10}] // Flatten

Formula

T(n-1,k) = A339195(n,k)/prime(n). - Gus Wiseman, Aug 24 2021

A355582 a(n) is the largest 5-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 20, 3, 2, 1, 24, 25, 2, 27, 4, 1, 30, 1, 32, 3, 2, 5, 36, 1, 2, 3, 40, 1, 6, 1, 4, 45, 2, 1, 48, 1, 50, 3, 4, 1, 54, 5, 8, 3, 2, 1, 60, 1, 2, 9, 64, 5, 6, 1, 4, 3, 10, 1, 72, 1, 2, 75, 4, 1, 6, 1, 80
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Cf. A379005 (rgs-transform), A379006 (ordinal transform).

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3, 5}^IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
  • PARI
    a(n) = 3^valuation(n, 3) * 5^valuation(n, 5) << valuation(n, 2);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return 2**v(2, n) * 3**v(3, n) * 5**v(5, n)
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = p^e if p <= 5 and 1 otherwise.
a(n) = A006519(n) * A038500(n) * A060904(n).
a(n) = 2^A007814(n) * 3^A007949(n) * 5^A112765(n).
a(n) = n / A165725(n).
Dirichlet g.f.: zeta(s)*(2^s-1)*(3^s-1)*(5^s-1)/((2^s-2)*(3^s-3)*(5^s-5)). - Amiram Eldar, Dec 25 2022
Sum_{k=1..n} a(k) ~ 2*n*log(n)^3 / (45*log(2)*log(3)*log(5)) + O(n*log(n)^2). - Vaclav Kotesovec, Apr 20 2025

A344293 5-smooth numbers n whose sum of prime indices A056239(n) is at least twice the number of prime indices A001222(n).

Original entry on oeis.org

1, 3, 5, 9, 10, 15, 25, 27, 30, 45, 50, 75, 81, 90, 100, 125, 135, 150, 225, 243, 250, 270, 300, 375, 405, 450, 500, 625, 675, 729, 750, 810, 900, 1000, 1125, 1215, 1250, 1350, 1500, 1875, 2025, 2187, 2250, 2430, 2500, 2700, 3000, 3125, 3375, 3645, 3750, 4050
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A number is 5-smooth if its prime divisors are all <= 5.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}            125: {3,3,3}
       3: {2}           135: {2,2,2,3}
       5: {3}           150: {1,2,3,3}
       9: {2,2}         225: {2,2,3,3}
      10: {1,3}         243: {2,2,2,2,2}
      15: {2,3}         250: {1,3,3,3}
      25: {3,3}         270: {1,2,2,2,3}
      27: {2,2,2}       300: {1,1,2,3,3}
      30: {1,2,3}       375: {2,3,3,3}
      45: {2,2,3}       405: {2,2,2,2,3}
      50: {1,3,3}       450: {1,2,2,3,3}
      75: {2,3,3}       500: {1,1,3,3,3}
      81: {2,2,2,2}     625: {3,3,3,3}
      90: {1,2,2,3}     675: {2,2,2,3,3}
     100: {1,1,3,3}     729: {2,2,2,2,2,2}
		

Crossrefs

Allowing any number of parts and sum gives A051037, counted by A001399.
These are Heinz numbers of the partitions counted by A266755.
Allowing parts > 5 gives A344291, counted by A110618.
The non-3-smooth case is A344294, counted by A325691.
Requiring the sum of prime indices to be even gives A344295.
A000070 counts non-multigraphical partitions, ranked by A344292.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A056239 adds up prime indices, row sums of A112798.
A300061 ranks partitions of even numbers, with 5-smooth case A344297.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]<=5&]

Formula

Intersection of A051037 and A344291.

A307534 Heinz numbers of strict integer partitions with 3 parts, all of which are odd.

Original entry on oeis.org

110, 170, 230, 310, 374, 410, 470, 506, 590, 670, 682, 730, 782, 830, 902, 935, 970, 1030, 1034, 1054, 1090, 1265, 1270, 1298, 1370, 1394, 1426, 1474, 1490, 1570, 1598, 1606, 1670, 1705, 1790, 1826, 1886, 1910, 1955, 1970, 2006, 2110, 2134, 2162, 2255, 2266
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A001399.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   110: {1,3,5}
   170: {1,3,7}
   230: {1,3,9}
   310: {1,3,11}
   374: {1,5,7}
   410: {1,3,13}
   470: {1,3,15}
   506: {1,5,9}
   590: {1,3,17}
   670: {1,3,19}
   682: {1,5,11}
   730: {1,3,21}
   782: {1,7,9}
   830: {1,3,23}
   902: {1,5,13}
   935: {3,5,7}
   970: {1,3,25}
  1030: {1,3,27}
  1034: {1,5,15}
  1054: {1,7,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&PrimeNu[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot, nextprime
    def A307534(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1) for a,k in filter(lambda x:x[0]&1,enumerate(primerange(2,integer_nthroot(x,3)[0]+1),1)) for b,m in filter(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
        return bisection(f,n,n) # Chai Wah Wu, Oct 20 2024

A344294 5-smooth but not 3-smooth numbers k such that A056239(k) >= 2*A001222(k).

Original entry on oeis.org

5, 10, 15, 25, 30, 45, 50, 75, 90, 100, 125, 135, 150, 225, 250, 270, 300, 375, 405, 450, 500, 625, 675, 750, 810, 900, 1000, 1125, 1215, 1250, 1350, 1500, 1875, 2025, 2250, 2430, 2500, 2700, 3000, 3125, 3375, 3645, 3750, 4050, 4500, 5000, 5625, 6075, 6250
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A number is d-smooth iff its prime divisors are all <= d.
A prime index of k is a number m such that prime(m) divides k, and the multiset of prime indices of k is row k of A112798. This row has length A001222(k) and sum A056239(k).

Examples

			The sequence of terms together with their prime indices begins:
       5: {3}           270: {1,2,2,2,3}
      10: {1,3}         300: {1,1,2,3,3}
      15: {2,3}         375: {2,3,3,3}
      25: {3,3}         405: {2,2,2,2,3}
      30: {1,2,3}       450: {1,2,2,3,3}
      45: {2,2,3}       500: {1,1,3,3,3}
      50: {1,3,3}       625: {3,3,3,3}
      75: {2,3,3}       675: {2,2,2,3,3}
      90: {1,2,2,3}     750: {1,2,3,3,3}
     100: {1,1,3,3}     810: {1,2,2,2,2,3}
     125: {3,3,3}       900: {1,1,2,2,3,3}
     135: {2,2,2,3}    1000: {1,1,1,3,3,3}
     150: {1,2,3,3}    1125: {2,2,3,3,3}
     225: {2,2,3,3}    1215: {2,2,2,2,2,3}
     250: {1,3,3,3}    1250: {1,3,3,3,3}
		

Crossrefs

Allowing any number of parts and sum gives A080193, counted by A069905.
The partitions with these Heinz numbers are counted by A325691.
Relaxing the smoothness conditions gives A344291, counted by A110618.
Allowing 3-smoothness gives A344293, counted by A266755.
A025065 counts partitions of n with at least n/2 parts, ranked by A344296.
A035363 counts partitions of n whose length is n/2, ranked by A340387.
A051037 lists 5-smooth numbers (complement: A279622).
A056239 adds up prime indices, row sums of A112798.
A257993 gives the least gap of the partition with Heinz number n.
A300061 lists numbers with even sum of prime indices (5-smooth: A344297).
A342050/A342051 list Heinz numbers of partitions with even/odd least gap.

Programs

  • Mathematica
    Select[Range[1000],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&&Max@@First/@FactorInteger[#]==5&]

Formula

Intersection of A080193 and A344291.

A344297 Heinz numbers of integer partitions of even numbers with no part greater than 3.

Original entry on oeis.org

1, 3, 4, 9, 10, 12, 16, 25, 27, 30, 36, 40, 48, 64, 75, 81, 90, 100, 108, 120, 144, 160, 192, 225, 243, 250, 256, 270, 300, 324, 360, 400, 432, 480, 576, 625, 640, 675, 729, 750, 768, 810, 900, 972, 1000, 1024, 1080, 1200, 1296, 1440, 1600, 1728, 1875, 1920
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
       1: {}                 81: {2,2,2,2}
       3: {2}                90: {1,2,2,3}
       4: {1,1}             100: {1,1,3,3}
       9: {2,2}             108: {1,1,2,2,2}
      10: {1,3}             120: {1,1,1,2,3}
      12: {1,1,2}           144: {1,1,1,1,2,2}
      16: {1,1,1,1}         160: {1,1,1,1,1,3}
      25: {3,3}             192: {1,1,1,1,1,1,2}
      27: {2,2,2}           225: {2,2,3,3}
      30: {1,2,3}           243: {2,2,2,2,2}
      36: {1,1,2,2}         250: {1,3,3,3}
      40: {1,1,1,3}         256: {1,1,1,1,1,1,1,1}
      48: {1,1,1,1,2}       270: {1,2,2,2,3}
      64: {1,1,1,1,1,1}     300: {1,1,2,3,3}
      75: {2,3,3}           324: {1,1,2,2,2,2}
		

Crossrefs

These partitions are counted by A007980.
Including partitions of odd numbers gives A051037 (complement: A279622).
Allowing parts > 3 gives A300061.
A001358 lists semiprimes.
A035363 counts partitions whose length is half their sum, ranked by A340387.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Select[Range[1000],EvenQ[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]]&&Max@@First/@FactorInteger[#]<=Prime[3]&]

Formula

Intersection of A051037 and A300061.
Previous Showing 31-40 of 117 results. Next