A080196
13-smooth numbers which are not 11-smooth.
Original entry on oeis.org
13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, 208, 234, 260, 273, 286, 312, 325, 338, 351, 364, 390, 416, 429, 455, 468, 507, 520, 546, 572, 585, 624, 637, 650, 676, 702, 715, 728, 780, 819, 832, 845, 858, 910, 936, 975, 1001, 1014, 1040
Offset: 1
78 = 2*3*13 is a term but 77 = 7*11 is not.
-
Select[Range[1000], FactorInteger[#][[-1, 1]] == 13 &] (* Amiram Eldar, Nov 10 2020 *)
-
{m=1040; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=0,floor(log(m/d)/log(11)), e=d*11^v; for(w=1,floor(log(m/e)/log(13)),z=concat(z,e*13^w))))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
-
from sympy import integer_log, prevprime
def A080196(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
def f(x): return n+x-g(x,13)
return 13*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024
A080195
11-smooth numbers which are not 7-smooth.
Original entry on oeis.org
11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 154, 165, 176, 198, 220, 231, 242, 264, 275, 297, 308, 330, 352, 363, 385, 396, 440, 462, 484, 495, 528, 539, 550, 594, 605, 616, 660, 693, 704, 726, 770, 792, 825, 847, 880, 891, 924, 968, 990, 1056, 1078, 1089
Offset: 1
33 = 3*11 is a term but 35 = 5*7 is not.
-
N:= 10^6; # to get all terms <= N
A:= NULL;
for v from 1 to floor(log[11](N)) do
V:= 11^v;
for u from 0 to floor(log[7](N/V)) do
U:= 7^u*V;
for t from 0 to floor(log[5](N/U)) do
T:= 5^t*U;
for s from 0 to floor(log[3](N/T)) do
S:= 3^s*T;
for r from 0 to floor(log[2](N/S)) do
A:= A, 2^r*S
od
od
od
od
od:
{A}; # Robert Israel, May 28 2014
-
Select[Range[1000], FactorInteger[#][[-1, 1]] == 11 &] (* Amiram Eldar, Nov 10 2020 *)
-
{m=1100; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=1,floor(log(m/d)/log(11)), z=concat(z,d*11^v)))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
-
from sympy import integer_log, prevprime
def A080195(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
def f(x): return n+x-g(x,11)
return 11*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024
A080786
Triangle T(n,k) = number of k-smooth numbers <= n, read by rows.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 4, 4, 5, 1, 3, 5, 5, 6, 6, 1, 3, 5, 5, 6, 6, 7, 1, 4, 6, 6, 7, 7, 8, 8, 1, 4, 7, 7, 8, 8, 9, 9, 9, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 11, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 13, 1, 4
Offset: 1
Triangle begins:
.................. 1
................ 1...2
.............. 1...2...3
............ 1...3...4...4
.......... 1...3...4...4...5
........ 1...3...5...5...6...6
...... 1...3...5...5...6...6...7
.... 1...4...6...6...7...7...8...8
.. 1...4...7...7...8...8...9...9...9.
Cf.
A000079,
A002473,
A003586,
A006530,
A014684,
A029837,
A036234,
A051037,
A051038,
A071520,
A071521,
A080197,
A080681,
A080682,
A080683.
-
a080786 n k = a080786_tabl !! (n-1) !! (k-1)
a080786_row n = a080786_tabl !! (n-1)
a080786_tabl = map reverse $ iterate f [1] where
f xs@(x:_) = (x + 1) :
(zipWith (+) xs (map (fromEnum . (lpf <=)) [x, x-1 ..]))
where lpf = fromInteger $ a006530 $ fromIntegral (x + 1)
-- Reinhard Zumkeller, Sep 17 2013
-
A080786 := proc(x,y)
local a,n ;
a := 0 ;
for n from 1 to x do
if A006530(n) <= y then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Aug 31 2013
-
P[n_] := FactorInteger[n][[-1, 1]]; P[1]=1; T[n_, k_] := (For[j=0; m=1, m <= n, m++, If[P[m] <= k, j++]]; j); Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2015 *)
-
from itertools import count, islice
from sympy import prevprime, integer_log
def A080786_T(n,k):
if k==1: return 1
def g(x,m): return x.bit_length() if m==2 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
return g(n,prevprime(k+1))
def A080786_gen(): # generator of terms
return (A080786_T(n,k) for n in count(1) for k in range(1,n+1))
A080786_list = list(islice(A080786_gen(),100)) # Chai Wah Wu, Oct 22 2024
A155182
Divisors of 12!.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 99, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 154, 160
Offset: 1
Last ten numbers: 47900160, 53222400, 59875200, 68428800, 79833600, 95800320, 119750400, 159667200, 239500800, 479001600. - _Zerinvary Lajos_, Jun 13 2009
A253572
Rectangular array A read by upward antidiagonals in which row A(n) is the sequence of all numbers divisible by no prime exceeding prime(n).
Original entry on oeis.org
1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 4, 16, 1, 2, 3, 4, 6, 32, 1, 2, 3, 4, 5, 8, 64, 1, 2, 3, 4, 5, 6, 9, 128, 1, 2, 3, 4, 5, 6, 8, 12, 256, 1, 2, 3, 4, 5, 6, 7, 9, 16, 512, 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 1024, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 2048
Offset: 1
Array A starts:
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...}
{1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, ...}
{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, ...}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, ...}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, ...}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...}
-
r = 20; c = 20; cmax = Max[300, Prime[r + 1]]; a[1] = Table[2^j, {j, 0, cmax}]; b[1] = a[1]; For[n = 2, n <= r, n++, a[n_] := a[n] = {}; b[n_] := b[n] = {}; a[n] = Union[Flatten[Table[Prime[n]^j*b[n - 1], {j, 0, cmax}]]]; For[k = 1, k <= cmax, k++, AppendTo[b[n], a[n][[k]]]]]; Table[b[n - k + 1][[k]], {n, 13}, {k, n}] // Flatten (* Array antidiagonals flattened. *)
(* Second program: *)
rows = 13; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; t = Table[p = Prime[n]; Take[smoothNumbers[p, If[p == 2, 2^rows, (1/Sqrt[6])* Exp[Sqrt[2*Log[2]*Log[3]*rows]]]], rows-n+1], {n, 1, rows}]; Table[t[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 09 2016 *)
First formula corrected by
Tom Edgar, Jan 08 2015
A254196
a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.
Original entry on oeis.org
1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
Offset: 1
a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
-
seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # Robert Israel, Jan 28 2015
-
Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]]
b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
-
a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017
A080187
Primes p such that 11 is the largest of all prime factors of the numbers between p and the next prime (cf. A052248).
Original entry on oeis.org
19, 97, 197, 461, 659, 1319, 1451, 2111, 2309, 2969, 3167, 3299, 4157, 5279, 7127, 9239, 10889, 11549, 15971, 16631, 22637, 25409, 26729, 29567, 30491, 34649, 34847, 55439, 55901, 64151, 87119, 92399, 98009, 110879, 118799, 152459, 164999, 176417
Offset: 1
97 is a term since 98 = 2*7^2, 99 = 3^2*11, 100 = 2^2*5^2 are the numbers between 97 and the next prime 101;
461 is a term since 462 = 2*3*7*11 is the only number between 461 and the next prime 463.
-
maxPrime[n1_, n2_] := FactorInteger[#][[-1, 1]] & /@ Range[n1, n2]; Select[Range[180000], PrimeQ[#] && Max[maxPrime[# + 1, NextPrime[#] - 1]] == 11 &] (* Amiram Eldar, Feb 08 2020 *)
-
{forprime(p=2,180000,q=nextprime(p+1); m=0; j=p+1; while(j
A080188
Primes p such that 13 is the largest of all prime factors of the numbers between p and the next prime (cf. A052248).
Original entry on oeis.org
23, 311, 349, 857, 1091, 1871, 1949, 2027, 2339, 2729, 3119, 3821, 5849, 6551, 7487, 9437, 10139, 10529, 11699, 15287, 18251, 21059, 21839, 38609, 42899, 49919, 51479, 57329, 61151, 65519, 69497, 70199, 70979, 81899, 97499, 108107, 109199, 114659
Offset: 1
349 is a term since 350 = 2*5^2*7, 351 = 3^3*13, 352 = 2^5*11 are the numbers between 349 and the next prime 353; 857 is a term since 858 = 2*3*11*13 is the only number between 857 and the next prime 859.
-
maxPrime[n1_, n2_] := FactorInteger[#][[-1, 1]] & /@ Range[n1, n2]; Select[Range[120000], PrimeQ[#] && Max[maxPrime[# + 1, NextPrime[#] - 1]] == 13 &] (* Amiram Eldar, Feb 08 2020 *)
-
{forprime(p=2,120000,q=nextprime(p+1); m=0; j=p+1; while(j
A184677
Number of numbers <= p^2 with largest prime factor <= p, where p is the n-th prime; a(0) = 1.
Original entry on oeis.org
1, 3, 7, 16, 30, 61, 88, 138, 177, 248, 361, 423, 569, 690, 777, 924, 1137, 1370, 1495, 1765, 1979, 2129, 2452, 2711, 3075, 3563, 3871, 4078, 4412, 4639, 4996, 6027, 6427, 6988, 7272, 8181, 8494, 9135, 9803, 10320, 11031, 11768, 12140, 13315, 13713, 14330
Offset: 0
a(1) = #{1,2,4} = 3 = number of binary powers <= 4;
a(2) = #{1,2,3,4,6,8,9} = 7 = number of 3-smooth numbers <= 9;
a(3) = #{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25} = 16 = number of 5-smooth numbers <= 25.
-
Block[{nn = 45, w}, w = Array[FactorInteger[#][[All, 1]] &, Prime[nn]^2]; {1}~Join~Table[Count[w[[1 ;; p^2]], ?(AllTrue[#, # <= p &] &)], {p, Prime@ Range@ nn}]] (* _Michael De Vlieger, Mar 13 2021 *)
-
a(n)=if(n==0, return(1)); my(p=prime(n),s=p); forfactored(k=p+1,p^2, if(vecmax(k[2][,1])<=p, s++)); s \\ Charles R Greathouse IV, Nov 27 2017
A298268
a(1) = 1, and for any n > 1, if n is the k-th number with greatest prime factor p, then a(n) is the k-th number with least prime factor p.
Original entry on oeis.org
1, 2, 3, 4, 5, 9, 7, 6, 15, 25, 11, 21, 13, 49, 35, 8, 17, 27, 19, 55, 77, 121, 23, 33, 65, 169, 39, 91, 29, 85, 31, 10, 143, 289, 119, 45, 37, 361, 221, 95, 41, 133, 43, 187, 115, 529, 47, 51, 161, 125, 323, 247, 53, 57, 209, 203, 437, 841, 59, 145, 61, 961
Offset: 1
The first terms, alongside A006530(n), are:
n a(n) gpf(n)
-- ---- ------
1 1 1
2 2 2
3 3 3
4 4 2
5 5 5
6 9 3
7 7 7
8 6 2
9 15 3
10 25 5
11 11 11
12 21 3
13 13 13
14 49 7
15 35 5
16 8 2
17 17 17
18 27 3
19 19 19
20 55 5
Cf.
A006530,
A008364,
A046022,
A051038,
A061395,
A078899,
A083140,
A125624,
A151800,
A176506,
A298268,
A298882 (inverse).
Comments