cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A080196 13-smooth numbers which are not 11-smooth.

Original entry on oeis.org

13, 26, 39, 52, 65, 78, 91, 104, 117, 130, 143, 156, 169, 182, 195, 208, 234, 260, 273, 286, 312, 325, 338, 351, 364, 390, 416, 429, 455, 468, 507, 520, 546, 572, 585, 624, 637, 650, 676, 702, 715, 728, 780, 819, 832, 845, 858, 910, 936, 975, 1001, 1014, 1040
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v >= 0, w > 0.

Examples

			78 = 2*3*13 is a term but 77 = 7*11 is not.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], FactorInteger[#][[-1, 1]] == 13 &] (* Amiram Eldar, Nov 10 2020 *)
  • PARI
    {m=1040; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=0,floor(log(m/d)/log(11)), e=d*11^v; for(w=1,floor(log(m/e)/log(13)),z=concat(z,e*13^w))))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
    
  • Python
    from sympy import integer_log, prevprime
    def A080196(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,13)
        return 13*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

From Amiram Eldar, Nov 10 2020: (Start)
a(n) = 13 * A080197(n).
Sum_{n>=1} 1/a(n) = 77/192. (End)

A080195 11-smooth numbers which are not 7-smooth.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 154, 165, 176, 198, 220, 231, 242, 264, 275, 297, 308, 330, 352, 363, 385, 396, 440, 462, 484, 495, 528, 539, 550, 594, 605, 616, 660, 693, 704, 726, 770, 792, 825, 847, 880, 891, 924, 968, 990, 1056, 1078, 1089
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 2^r*3^s*5^t*7^u*11^v with r, s, t, u >= 0, v > 0.

Examples

			33 = 3*11 is a term but 35 = 5*7 is not.
		

Crossrefs

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    A:= NULL;
    for v from 1 to floor(log[11](N)) do
       V:= 11^v;
       for u from 0 to floor(log[7](N/V)) do
          U:= 7^u*V;
          for t from 0 to floor(log[5](N/U)) do
            T:= 5^t*U;
            for s from 0 to floor(log[3](N/T)) do
              S:= 3^s*T;
              for r from 0 to floor(log[2](N/S)) do
                 A:= A, 2^r*S
              od
             od
           od
        od
    od:
    {A}; # Robert Israel, May 28 2014
  • Mathematica
    Select[Range[1000], FactorInteger[#][[-1, 1]] == 11 &] (* Amiram Eldar, Nov 10 2020 *)
  • PARI
    {m=1100; z=[]; for(r=0,floor(log(m)/log(2)),a=2^r; for(s=0,floor(log(m/a)/log(3)),b=a*3^s; for(t=0, floor(log(m/b)/log(5)),c=b*5^t; for(u=0,floor(log(m/c)/log(7)),d=c*7^u; for(v=1,floor(log(m/d)/log(11)), z=concat(z,d*11^v)))))); z=vecsort(z); for(i=1,length(z),print1(z[i],","))}
    
  • Python
    from sympy import integer_log, prevprime
    def A080195(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,11)
        return 11*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

a(n) = 11 * A051038(n). - David A. Corneth, May 27 2017
Sum_{n>=1} 1/a(n) = 7/16. - Amiram Eldar, Nov 10 2020

A080786 Triangle T(n,k) = number of k-smooth numbers <= n, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 4, 4, 5, 1, 3, 5, 5, 6, 6, 1, 3, 5, 5, 6, 6, 7, 1, 4, 6, 6, 7, 7, 8, 8, 1, 4, 7, 7, 8, 8, 9, 9, 9, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 1, 4, 7, 7, 9, 9, 10, 10, 10, 10, 11, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 1, 4, 8, 8, 10, 10, 11, 11, 11, 11, 12, 12, 13, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 12 2003

Keywords

Comments

T(n,n-1) = A014684(n) for n>1;
T(n,2) = A029837(n) for n>1; T(n,3) = A071521(n) for n>2; T(n,5) = A071520(n) for n>4.
A036234(n) = number of distinct terms in n-th row. - Reinhard Zumkeller, Sep 17 2013

Examples

			Triangle begins:
.................. 1
................ 1...2
.............. 1...2...3
............ 1...3...4...4
.......... 1...3...4...4...5
........ 1...3...5...5...6...6
...... 1...3...5...5...6...6...7
.... 1...4...6...6...7...7...8...8
.. 1...4...7...7...8...8...9...9...9.
		

Crossrefs

Programs

  • Haskell
    a080786 n k = a080786_tabl !! (n-1) !! (k-1)
    a080786_row n = a080786_tabl !! (n-1)
    a080786_tabl = map reverse $ iterate f [1] where
       f xs@(x:_) = (x + 1) :
                    (zipWith (+) xs (map (fromEnum . (lpf <=)) [x, x-1 ..]))
            where lpf = fromInteger $ a006530 $ fromIntegral (x + 1)
    -- Reinhard Zumkeller, Sep 17 2013
    
  • Maple
    A080786 := proc(x,y)
        local a,n ;
        a := 0 ;
        for n from 1 to x do
            if A006530(n) <= y then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 31 2013
  • Mathematica
    P[n_] := FactorInteger[n][[-1, 1]]; P[1]=1; T[n_, k_] := (For[j=0; m=1, m <= n, m++, If[P[m] <= k, j++]]; j); Table[T[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2015 *)
  • Python
    from itertools import count, islice
    from sympy import prevprime, integer_log
    def A080786_T(n,k):
        if k==1: return 1
        def g(x,m): return x.bit_length() if m==2 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        return g(n,prevprime(k+1))
    def A080786_gen(): # generator of terms
        return (A080786_T(n,k) for n in count(1) for k in range(1,n+1))
    A080786_list = list(islice(A080786_gen(),100)) # Chai Wah Wu, Oct 22 2024

A155182 Divisors of 12!.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 99, 100, 105, 108, 110, 112, 120, 126, 128, 132, 135, 140, 144, 150, 154, 160
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 21 2009

Keywords

Comments

The sequence is finite with A027423(12) = 792 terms:
a(792) = A000142(12) = 479001600 is the last term.

Examples

			Last ten numbers: 47900160, 53222400, 59875200, 68428800, 79833600, 95800320, 119750400, 159667200, 239500800, 479001600. - _Zerinvary Lajos_, Jun 13 2009
		

Crossrefs

Subsequence of A051038.
Cf. A174228. - Reinhard Zumkeller, May 24 2010

Programs

  • Mathematica
    Divisors[12!][[;;100]] (* Paolo Xausa, Jul 31 2024 *)
  • PARI
    divisors(12!)
  • Sage
    divisors(factorial(12)) # Zerinvary Lajos, Jun 13 2009
    

A253572 Rectangular array A read by upward antidiagonals in which row A(n) is the sequence of all numbers divisible by no prime exceeding prime(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 3, 4, 16, 1, 2, 3, 4, 6, 32, 1, 2, 3, 4, 5, 8, 64, 1, 2, 3, 4, 5, 6, 9, 128, 1, 2, 3, 4, 5, 6, 8, 12, 256, 1, 2, 3, 4, 5, 6, 7, 9, 16, 512, 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 1024, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 24, 2048
Offset: 1

Views

Author

L. Edson Jeffery, Jan 03 2015

Keywords

Comments

Successive rows tend to A000027.

Examples

			Array A starts:
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, ...}
{1, 2, 3, 4,  6,  8,  9,  12,  16,  18,   24,   27,   32,   36, ...}
{1, 2, 3, 4,  5,  6,  8,   9,  10,  12,   15,   16,   18,   20, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   12,   14,   15,   16, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   14,   15, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   13,   14, ...}
{1, 2, 3, 4,  5,  6,  7,   8,   9,  10,   11,   12,   13,   14, ...}
		

Crossrefs

Cf. A000079, A003586, A051037, A002473, A051038 (these are rows 1-5).
Cf. A000027 (natural numbers), A253573.

Programs

  • Mathematica
    r = 20; c = 20; cmax = Max[300, Prime[r + 1]]; a[1] = Table[2^j, {j, 0, cmax}]; b[1] = a[1]; For[n = 2, n <= r, n++, a[n_] := a[n] = {}; b[n_] := b[n] = {}; a[n] = Union[Flatten[Table[Prime[n]^j*b[n - 1], {j, 0, cmax}]]]; For[k = 1, k <= cmax, k++, AppendTo[b[n], a[n][[k]]]]]; Table[b[n - k + 1][[k]], {n, 13}, {k, n}] // Flatten (* Array antidiagonals flattened. *)
    (* Second program: *)
    rows = 13; smoothNumbers[p_, max_] := Module[{a, aa, k, pp, iter}, k = PrimePi[p]; aa = Array[a, k]; pp = Prime[Range[k]]; iter = Table[{a[j], 0, PowerExpand @ Log[pp[[j]], max/Times @@ (Take[pp, j-1]^Take[aa, j-1])]}, {j, 1, k}]; Table[Times @@ (pp^aa), Sequence @@ iter // Evaluate] // Flatten // Sort]; t = Table[p = Prime[n]; Take[smoothNumbers[p, If[p == 2, 2^rows, (1/Sqrt[6])* Exp[Sqrt[2*Log[2]*Log[3]*rows]]]], rows-n+1], {n, 1, rows}];  Table[t[[n-k+1, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 09 2016 *)

Formula

A(n) = {prime(1)^(i_1)*...*prime(n)^(i_n) : i_1,...,i_n in {0,1,2,...}}.
A(1) subset A(2) subset A(3) subset ... .

Extensions

First formula corrected by Tom Edgar, Jan 08 2015

A254196 a(n) is the numerator of Product_{i=1..n} (1/(1-1/prime(i))) - 1.

Original entry on oeis.org

1, 2, 11, 27, 61, 809, 13945, 268027, 565447, 2358365, 73551683, 2734683311, 112599773191, 4860900544813, 9968041656757, 40762420985117, 83151858555707, 5085105491885327, 341472595155548909, 24295409051193284539
Offset: 1

Views

Author

Geoffrey Critzer, Jan 26 2015

Keywords

Comments

The denominators are A038110(n+1).
a(n)/A038110(n+1) = Sum_{k >=2} 1/k where k is a positive integer whose prime factors are among the first n primes. In particular, for n=1,2,3,4,5, a(n)/A038110(n+1) is the sum of the reciprocals of the terms (excepting the first, 1) in A000079, A003586, A051037, A002473, A051038.
Appears to be a duplicate of A161527. - Michel Marcus, Aug 05 2019

Examples

			a(1)=1 because 1/2 + 1/4 + 1/8 + 1/16 + ... = 1/1.
a(2)=2 because 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/9 + 1/12 + ... = 2/1.
a(3)=11 because 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/8 + 1/9 + 1/10 + 1/12 + 1/15 + ... = 11/4.
a(4)=27 because Sum_{n>=2} 1/A002473(n) = 27/8.
a(5)=61 because Sum_{n>=2} 1/A051038(n) = 61/16.
		

Crossrefs

Programs

  • Maple
    seq(numer(mul(1/(1-1/ithprime(i)),i=1..n)-1),n=1..20); # Robert Israel, Jan 28 2015
  • Mathematica
    Numerator[Table[Product[1/(1 - 1/p), {p, Prime[Range[n]]}] - 1, {n,1,20}]]
    b[0] := 0; b[n_] := b[n - 1] + (1 - b[n - 1]) / Prime[n]
    Numerator@ Table[b[n], {n, 1, 20}] (* Fred Daniel Kline, Jun 27 2017 *)
  • PARI
    a(n) = numerator(prod(i=1, n, (1/(1-1/prime(i)))) - 1); \\ Michel Marcus, Jun 29 2017

Formula

a(n) = A038111(n+1)/prime(n+1)-A038110(n+1). - Robert Israel, Jan 28 2015, corrected Jul 07 2019.

A080187 Primes p such that 11 is the largest of all prime factors of the numbers between p and the next prime (cf. A052248).

Original entry on oeis.org

19, 97, 197, 461, 659, 1319, 1451, 2111, 2309, 2969, 3167, 3299, 4157, 5279, 7127, 9239, 10889, 11549, 15971, 16631, 22637, 25409, 26729, 29567, 30491, 34649, 34847, 55439, 55901, 64151, 87119, 92399, 98009, 110879, 118799, 152459, 164999, 176417
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

The sequence appears to consist of 19, 97 and the lesser of twin primes q (A001359) such that q+1 is 11-smooth (A051038) but not 7-smooth (A002473, A080195).

Examples

			97 is a term since 98 = 2*7^2, 99 = 3^2*11, 100 = 2^2*5^2 are the numbers between 97 and the next prime 101;
461 is a term since 462 = 2*3*7*11 is the only number between 461 and the next prime 463.
		

Crossrefs

Programs

  • Mathematica
    maxPrime[n1_, n2_] := FactorInteger[#][[-1, 1]] & /@ Range[n1, n2]; Select[Range[180000], PrimeQ[#] && Max[maxPrime[# + 1, NextPrime[#] - 1]] == 11 &] (* Amiram Eldar, Feb 08 2020 *)
  • PARI
    {forprime(p=2,180000,q=nextprime(p+1); m=0; j=p+1; while(j
    				

A080188 Primes p such that 13 is the largest of all prime factors of the numbers between p and the next prime (cf. A052248).

Original entry on oeis.org

23, 311, 349, 857, 1091, 1871, 1949, 2027, 2339, 2729, 3119, 3821, 5849, 6551, 7487, 9437, 10139, 10529, 11699, 15287, 18251, 21059, 21839, 38609, 42899, 49919, 51479, 57329, 61151, 65519, 69497, 70199, 70979, 81899, 97499, 108107, 109199, 114659
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

The sequence appears to consist of 23, 349 and the lesser of twin primes q (A001359) such that q+1 is 13-smooth (A080197) but not 11-smooth (A051038, A080196).

Examples

			349 is a term since 350 = 2*5^2*7, 351 = 3^3*13, 352 = 2^5*11 are the numbers between 349 and the next prime 353; 857 is a term since 858 = 2*3*11*13 is the only number between 857 and the next prime 859.
		

Crossrefs

Programs

  • Mathematica
    maxPrime[n1_, n2_] := FactorInteger[#][[-1, 1]] & /@ Range[n1, n2]; Select[Range[120000], PrimeQ[#] && Max[maxPrime[# + 1, NextPrime[#] - 1]] == 13 &] (* Amiram Eldar, Feb 08 2020 *)
  • PARI
    {forprime(p=2,120000,q=nextprime(p+1); m=0; j=p+1; while(j
    				

A184677 Number of numbers <= p^2 with largest prime factor <= p, where p is the n-th prime; a(0) = 1.

Original entry on oeis.org

1, 3, 7, 16, 30, 61, 88, 138, 177, 248, 361, 423, 569, 690, 777, 924, 1137, 1370, 1495, 1765, 1979, 2129, 2452, 2711, 3075, 3563, 3871, 4078, 4412, 4639, 4996, 6027, 6427, 6988, 7272, 8181, 8494, 9135, 9803, 10320, 11031, 11768, 12140, 13315, 13713, 14330
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 27 2011

Keywords

Comments

a(n) = #{m: m<=A001248(n) and A006530(m)<=A000040(n)} for n > 0.

Examples

			a(1) = #{1,2,4} = 3 = number of binary powers <= 4;
a(2) = #{1,2,3,4,6,8,9} = 7 = number of 3-smooth numbers <= 9;
a(3) = #{1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25} = 16 = number of 5-smooth numbers <= 25.
		

Crossrefs

Programs

A298268 a(1) = 1, and for any n > 1, if n is the k-th number with greatest prime factor p, then a(n) is the k-th number with least prime factor p.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 6, 15, 25, 11, 21, 13, 49, 35, 8, 17, 27, 19, 55, 77, 121, 23, 33, 65, 169, 39, 91, 29, 85, 31, 10, 143, 289, 119, 45, 37, 361, 221, 95, 41, 133, 43, 187, 115, 529, 47, 51, 161, 125, 323, 247, 53, 57, 209, 203, 437, 841, 59, 145, 61, 961
Offset: 1

Views

Author

Rémy Sigrist, Jan 27 2018

Keywords

Comments

This sequence is a permutation of the natural numbers, with inverse A298882.
For any prime p and k > 0:
- if s_p(k) is the k-th p-smooth number and r_p(k) is the k-th p-rough number,
- then a(p * s_p(k)) = p * r_p(k),
- for example: a(11 * A051038(k)) = 11 * A008364(k).

Examples

			The first terms, alongside A006530(n), are:
  n     a(n)   gpf(n)
  --    ----   ------
   1      1      1
   2      2      2
   3      3      3
   4      4      2
   5      5      5
   6      9      3
   7      7      7
   8      6      2
   9     15      3
  10     25      5
  11     11     11
  12     21      3
  13     13     13
  14     49      7
  15     35      5
  16      8      2
  17     17     17
  18     27      3
  19     19     19
  20     55      5
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

a(1) = 1.
a(A125624(n, k)) = A083140(n, k) for any n > 0 and k > 0.
a(n) = A083140(A061395(n), A078899(n)) for any n > 1.
Empirically:
- a(n) = n iff n belongs to A046022,
- a(2^k) = 2 * k for any k > 0,
- a(2 * p) = p^2 for any prime p,
- a(3 * p) = p * A151800(p) for any odd prime p.
Previous Showing 21-30 of 38 results. Next