cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A000150 Number of dissections of an n-gon, rooted at an exterior edge, asymmetric with respect to that edge.

Original entry on oeis.org

0, 0, 1, 2, 7, 20, 66, 212, 715, 2424, 8398, 29372, 104006, 371384, 1337220, 4847208, 17678835, 64821680, 238819350, 883629164, 3282060210, 12233125112, 45741281820, 171529777432, 644952073662, 2430973096720, 9183676536076
Offset: 0

Views

Author

Keywords

Comments

Number of Dyck paths of length 2n having an odd number of peaks at even height. Example: a(3)=2 because we have UDU(UD)D and U(UD)DUD, where U=(1,1), D=(1,-1) and the peaks at even height are shown between parentheses. - Emeric Deutsch, Nov 13 2004
For n>=1, a(n) is the number of unordered binary trees with n internal nodes in which the left subtree is distinct from the right subtree. - Geoffrey Critzer, Feb 21 2013
Assuming offset -1 this is an analog of A275166: pairs of distinct Catalan numbers with index sum n. - R. J. Mathar, Jul 19 2016

References

  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.26).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

a(n) = T(2n+2, n), array T as in A051168, a count of Lyndon words.
Cf. A007595.
A diagonal of the square array described in A051168.

Programs

  • Mathematica
    nn=20;CoefficientList[Series[x/2(((1-(1-4x)^(1/2))/(2x))^2-(1-(1-4x^2)^(1/2))/(2x^2)),{x,0,nn}],x]  (* Geoffrey Critzer, Feb 21 2013 *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = 1+x*c(x^2). Then g.f. is (c(x)-d(x))/2.
G.f.: (sqrt(1-4*z^2) - sqrt(1-4*z) - 2*z)/(4*z). - Emeric Deutsch, Nov 13 2004
With c(x) defined as above: g.f. = x*(c(x)^2/2 - c(x^2)/2). - Geoffrey Critzer, Feb 21 2013
a(n) = ( 2^(n-3)/sqrt(Pi) ) * ( 4*2^n*GAMMA(n+1/2)/GAMMA(n+2) + ((-1)^n - 1)*GAMMA(n/2)/GAMMA(n/2 + 3/2) ) for n>0. - Mark van Hoeij, Nov 11 2009
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
a(2n) = A000108(2n) / 2; a(2n+1) = ( A000108(2n+1) - A000108(n) ) / 2. - John Bodeen, Jun 24 2015
D-finite with recurrence +n*(n+1)*(n-2)^2*a(n) -2*n*(2*n-5)*(n-1)^2*a(n-1) -4*n*(n-2)^3*a(n-2) +8*(2*n-5)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Oct 28 2021

Extensions

Additional comments from Clark Kimberling

A011797 a(n) = floor(C(n,6)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 4, 12, 30, 66, 132, 245, 429, 715, 1144, 1768, 2652, 3876, 5537, 7752, 10659, 14421, 19228, 25300, 32890, 42287, 53820, 67860, 84825, 105183, 129456, 158224, 192129, 231880, 278256
Offset: 0

Views

Author

Keywords

Comments

a(n-1) is the number of aperiodic necklaces (Lyndon words) with 7 black beads and n-7 white beads.

Crossrefs

Cf. A000031, A001037, A051168. Same as A051172(n+1).
First differences of A011853.
A column of triangle A011847.

Programs

  • Mathematica
    CoefficientList[Series[x^6/7 (1/(1-x)^7-1/(1- x^7)),{x,0,40}],x]; (* Herbert Kociemba, Oct 16 2016 *)
  • PARI
    a(n) = binomial(n, 6)\7; \\ Michel Marcus, Oct 16 2016

Formula

G.f.: (1+x^3)^2/((1-x)^4(1-x^2)^2(1-x^7))*x^7.
a(n) = floor(binomial(n+1,7)/(n+1)). [Gary Detlefs, Nov 23 2011]
G.f.: (x^6/7)*(1/(1-x)^7-1/(1- x^7)). - Herbert Kociemba, Oct 16 2016

A031164 Irreducible Euler sums of weight 8 and depth 10+2n.

Original entry on oeis.org

1, 4, 15, 40, 99, 212, 429, 800, 1430, 2424, 3978, 6288, 9690, 14520, 21318, 30624, 43263, 60060, 82225, 110968, 148005, 195052, 254475, 328640, 420732, 533936, 672452, 840480, 1043460, 1286832, 1577532, 1922496, 2330445
Offset: 0

Views

Author

Keywords

Comments

a(n-9)=number of aperiodic necklaces (Lyndon words) with 8 black beads and n-8 white beads.

Crossrefs

Cf. A000031, A001037, A051168. Row 8 in A245558.
Cf. A032094. - M. F. Hasler, May 02 2009

Programs

  • Mathematica
    Table[(Binomial[n+8,7]-If[OddQ[n],1,0]Binomial[(n+7)/2,3])/8,{n,0,40}] (* or *) CoefficientList[Series[(1+x^2)/((1-x)^8 (1+x)^4),{x,0,40}],x] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    A031164(n)=(binomial(n+8,7)-if(n%2,binomial(n\2+4,3)))>>3 \\ M. F. Hasler, May 02 2009

Formula

G.f.: (1+x^2)/((1-x)*(1-x^2))^4
a(n) = [C(n+8,7)-(n%2)*C((n+7)/2,3)]/8, where C = binomial, n%2 = parity of n (=1 if odd, 0 else). - M. F. Hasler, May 02 2009
a(0)=1, a(1)=4, a(2)=15, a(3)=40, a(4)=99, a(5)=212, a(6)=429, a(7)=800, a(8)=1430, a(9)=2424, a(10)=3978, a(11)=6288, a(n) = 4*a(n-1)-2*a(n-2)-12*a(n-3)+17*a(n-4)+8*a(n-5)-28*a(n-6)+8*a(n-7)+17*a(n-8)-12*a(n-9)- 2*a(n-10)+4*a(n-11)-a(n-12). - Harvey P. Dale, Jun 20 2011
G.f.: ((-1+x)^-8-(-1+x^2)^-4)/(8*x). - Herbert Kociemba, Oct 16 2016

A059865 Product_{i=4..n} (prime(i) - 6).

Original entry on oeis.org

1, 1, 1, 1, 5, 35, 385, 5005, 85085, 1956955, 48923875, 1516640125, 53082404375, 1964048961875, 80526007436875, 3784722349533125, 200590284525255625, 11032465648889059375, 672980404582232621875, 43743726297845120421875
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Arises in Hardy-Littlewood prime k-tuplet conjectural formulas. Also the sequence gives the exact numbers of X42424Y difference-pattern in dRRS[m], where m=modulus=A002110(n). See A049296 (=dRRS[210]=list of first differences of reduced residue system modulo 210=4th primorial). A pattern X42424Y corresponds to a residue-sextuple or it is their difference-quintuple, X,Y > 4. Analogous pattern for primes is in A022008.
a(352) has 1001 decimal digits. - Michael De Vlieger, Mar 06 2017

Examples

			a(7) = (prime(4)-6) * (prime(5)-6) * (prime(6)-6) * (prime(7)-6) = 1 * 5* 7 *11 = 385
 Also in one period of dRRS with 2,6,30,210,2310,... modulus [A002110(n)] 1,2,8,48,480,... differences occur [A005867(n)]. The number of X42424Y residue-difference-patterns are 0,1,1,1,5,... respectively starting at suitable residues coprime to A002110(n).
		

References

  • See A059862 for references.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

Crossrefs

Programs

  • Mathematica
    Table[Product[Prime@ i - 6, {i, 4, n}], {n, 19}] (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    a(n) = prod(k=4, n, prime(k) - 6); \\ Michel Marcus, Mar 06 2017

A124720 Number of ternary Lyndon words of length n with exactly two 1's.

Original entry on oeis.org

2, 5, 16, 38, 96, 220, 512, 1144, 2560, 5616, 12288, 26592, 57344, 122816, 262144, 556928, 1179648, 2490112, 5242880, 11009536, 23068672, 48233472, 100663296, 209713152, 436207616, 905965568, 1879048192, 3892305920, 8053063680, 16642981888, 34359738368
Offset: 3

Views

Author

Mike Zabrocki, Nov 05 2006

Keywords

Comments

If the offsets are modified, A124720 to A124723 are the 2nd to 5th Witt transform of A000079 [Moree]. - R. J. Mathar, Nov 08 2008
a(n+2) is the number of distinct unordered pairs of binary words having a total length of n letters: a(2+2) = 5 because we have the unordered pairs: (e,00),(e,01), (e,10), (e,11), (0,1) where e represents the empty word. Each pair has a total of 2 letters and the two elements of each pair are distinct words. - Geoffrey Critzer, Feb 28 2013

Examples

			a(4) = 5 because 1122, 1123, 1132, 1213, 1133 are all Lyndon words on 3 letters with 2 ones.
		

Crossrefs

Programs

  • Mathematica
    nn=30;Drop[CoefficientList[Series[(1/(1-2x)^2-1/(1-2x^2))/2,{x,0,nn}],x],1] (* Geoffrey Critzer, Feb 28 2013 *)
  • PARI
    Vec(x^3*(2-3*x)/((1-2*x)^2*(1-2*x^2)) + O(x^40)) \\ Colin Barker, Oct 28 2016

Formula

G.f.: x^3*(2-3 x)/((1-2 x^2)(1- 2x)^2) = (x^2/(1-2x)^2 - x^2/(1-2*x^2))/2.
From Colin Barker, Oct 28 2016: (Start)
a(n) = 2^(n-3)*(n-1)-2^(n/2-2) for n even.
a(n) = 2^(n-3)*n-2^(n-3) for n odd.
a(n) = 4*a(n-1)-2*a(n-2)-8*a(n-3)+8*a(n-4) for n>6.
(End)

A124814 Triangle of number of 4-ary Lyndon words of length n containing exactly k 1s.

Original entry on oeis.org

1, 3, 1, 3, 3, 0, 8, 9, 3, 0, 18, 27, 12, 3, 0, 48, 81, 54, 18, 3, 0, 116, 243, 198, 89, 21, 3, 0, 312, 729, 729, 405, 135, 27, 3, 0, 810, 2187, 2538, 1701, 702, 189, 30, 3, 0, 2184, 6561, 8748, 6801, 3402, 1134, 251, 36, 3, 0, 5880, 19683, 29484, 26244, 15282, 6123, 1692
Offset: 0

Views

Author

Mike Zabrocki, Nov 08 2006

Keywords

Comments

Row sums given by A027377, first column given by A027376, second column given by A000244, third through sixth columns (k=2,3,4,5) given by A124810, A124811, A124812, A124813, third diagonal given by 3*A032766.

Examples

			T(4,2) = 12 because the words 11ab, 11ba, 1a1b for ab=23, 24, 34 and 11aa for a=2,3,4 are all Lyndon and of length 4 with exactly two 1s.
From _Andrew Howroyd_, Mar 26 2017: (Start)
Triangle starts
*   1
*   3    1
*   3    3    0
*   8    9    3    0
*  18   27   12    3   0
*  48   81   54   18   3   0
* 116  243  198   89  21   3  0
* 312  729  729  405 135  27  3 0
* 810 2187 2538 1701 702 189 30 3 0
(End)
		

Crossrefs

Programs

  • Maple
    C:=combinat[numbcomb]:mu:=numtheory[mobius]:divs:=numtheory[divisors]: T:=proc(n,k) local d; if k>0 then add(mu(d)*C(n/d-1,(n-k)/d)*3^((n-k)/d),d=divs(n) intersect divs(k))/k; elif n>0 then 1/n*add(mu(d)*3^(n/d),d=divs(n)); else 1; fi; end; [seq([seq(T(n,k),k=0..n)],n=0..10)];
  • Mathematica
    nmax = 10; col[0] = Table[If[n == 0, 1, 1/n* DivisorSum[n, MoebiusMu[#]* 3^(n/#)&]], {n, 0, nmax}]; col[k_] := x^k/k * DivisorSum[k, MoebiusMu[#] / (1 - 3*x^#)^(k/#)&] + O[x]^(nmax+2) // CoefficientList[#, x]&; Table[ col[k][[n+1]], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2017 *)

Formula

T(n,0) = 1/n*Sum_{d|n} mu(d)*3^(n/d) = A027376(n).
T(n,n-1) = 3 for k>0.
T(n,k) = 1/k*Sum_{d|k,d|n} mu(d) C(n/d-1,(n-k)/d )*3^((n-k)/d) = 1/(n-k)*Sum_{d|k,d|n} mu(d) C(n/d-1,k/d)*3^((n-k)/d).
O.g.f. of columns: Sum_n T(n,k) x^n = x^k/k*Sum_{d|k} mu(d)*1/(1-3*x^d)^(k/d).
O.g.f. of diagonals: Sum_n T(n,n-k) x^n = x^k/k*Sum_{d|k} mu(d)*(3/(1-x^d))^(k/d).

A124721 Number of ternary Lyndon words with exactly three 1's.

Original entry on oeis.org

2, 8, 26, 80, 224, 596, 1536, 3840, 9384, 22528, 53248, 124240, 286720, 655360, 1485472, 3342336, 7471104, 16602432, 36700160, 80740352, 176859776, 385875968, 838860800, 1817531648, 3925868544, 8455716864, 18164132352, 38923141120
Offset: 4

Views

Author

Mike Zabrocki, Nov 05 2006

Keywords

Examples

			a(5) = 8 because 11122, 11212, 11123, 11132, 11213, 11312, 11133, 11313 are all ternary Lyndon words of length 5 with three 1's
		

Crossrefs

Formula

G.f.: 2*x^4*(x - 1)^2/(1-2*x^3)/(1-2*x)^3 = (x^3/(1-2*x)^3-x^3/(1-2*x^3))/3

A124722 Number of ternary Lyndon words with exactly four 1's.

Original entry on oeis.org

2, 9, 40, 137, 448, 1336, 3840, 10540, 28160, 73168, 186368, 465808, 1146880, 2785024, 6684672, 15875520, 37355520, 87161600, 201850880, 464254208, 1061158912, 2411718656, 5452595200, 12268325888, 27481079808, 61303918592
Offset: 5

Views

Author

Mike Zabrocki, Nov 05 2006

Keywords

Examples

			a(6) = 9 because 111122, 111212, 111123, 111213, 112113, 111132, 111312, 111133, 111313 are all ternary Lyndon words with four 1's
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-20,0,76,-96,-32,128,-64},{2,9,40,137,448,1336,3840,10540},40] (* Harvey P. Dale, Nov 04 2020 *)

Formula

G.f.: x^5*(2-3*x)*(1-x)^2/(1 - 2*x^2)^2/(1 - 2*x)^4 = (1/(1-2*x)^4-1/(1-2*x^2)^2)/4

A124723 Number of ternary Lyndon words with exactly five 1's.

Original entry on oeis.org

2, 12, 56, 224, 806, 2688, 8448, 25344, 73216, 205004, 559104, 1490944, 3899392, 10027008, 25401752, 63504384, 156893184, 383516672, 928514048, 2228433712, 5305794560, 12540968960, 29444014080, 68702699520, 159390262880
Offset: 6

Views

Author

Mike Zabrocki, Nov 05 2006

Keywords

Examples

			a(7) = 12 because 11111ab, 1111a1b, 111a11b where ab = 22, 23, 32 or 33 are all ternary Lyndon words of length 7 with five 1's.
		

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([[806, 224, 56, 12, 2, 0$5]]). Matrix(10, (i,j)-> `if`(i=j-1, 1, `if`(j=1, [10, -40, 80, -80, 34, -20, 80, -160, 160, -64] [i], 0)))^(n-10))[1,1]: seq(a(n), n=6..30);  # Alois P. Heinz, Aug 04 2008

Formula

G.f.: 2*x^6*(1-2*x+3*x^2)*(1-x)^2/(1-2*x^5)/(1-2*x)^5= (1/(1-2*x)^5-1/(1-2*x^5))/5.

A059862 a(n) = Product_{i=3..n} (prime(i) - 3).

Original entry on oeis.org

1, 1, 2, 8, 64, 640, 8960, 143360, 2867200, 74547200, 2087321600, 70968934400, 2696819507200, 107872780288000, 4746402332672000, 237320116633600000, 13289926531481600000, 770815738825932800000, 49332207284859699200000, 3354590095370459545600000, 234821306675932168192000000
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Examples

			For n = 6, a(6) = 640 because:
prime(1..6)-3 = (-1,0,2,4,8,10) -> (1,1,2,4,8,10)
and
1*1*2*4*8*10 = 640. [Example generalized and reformatted per observation of _Jon E. Schoenfield_ by _Harlan J. Brothers_, Jul 15 2018]
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, A8, A1
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, 1, a(n-1)*(ithprime(n)-3))
        end:
    seq(a(n), n=1..21);  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    Join[{1, 1}, Table[Product[Prime[i] - 3, {i, 3, n}], {n, 3, 19}]] (* Harlan J. Brothers, Jul 02 2018 *)
    a[1] = 1; a[2] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 3);
    Table[a[n], {n, 19}] (* Harlan J. Brothers, Jul 02 2018 *)
  • PARI
    a(n) = prod(i=3, n, prime(i) - 3); \\ Michel Marcus, Jul 15 2018

Formula

a(1) = a(2) = 1; a(n) = a(n-1) * (prime(n) - 3) for n >= 3. - David A. Corneth, Jul 15 2018

Extensions

Name clarified, offset corrected by David A. Corneth, Jul 15 2018
Previous Showing 31-40 of 54 results. Next