cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A043297 Primes p such that B(4*p) has denominator 30 where B(2n) are the Bernoulli numbers.

Original entry on oeis.org

2, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 181, 197, 211, 223, 227, 229, 241, 257, 263, 269, 271, 283, 311, 313, 317, 331, 337, 347, 349, 353, 367, 379, 383, 389, 397, 401, 421, 439, 449, 457, 461, 463, 467, 479, 503, 521
Offset: 1

Views

Author

Benoit Cloitre, Mar 24 2002

Keywords

Comments

Complement of A087634, primes p such that phi(k) = 4p has a solution, where phi is Euler's totient function.
The sequences a(n), A005384 and A023212 form a partition of the set of primes > 3: Using von Staudt-Clausen formula the divisors of 4p increased by 1 are {2,3,5,p+1,2p+1,4p+1}, p+1 is clearly an even number, and if 2p+1 and 4p+1 are not prime, then denom(B(4p))=30. - Enrique Pérez Herrero, Aug 15 2011
Also 2 with the primes p such that both 2*p+1 and 4*p+1 are composite: A210684. For these numbers k > 2 the equation: phi(n)=k*tau(n), where phi is A000010 and tau is A000005, has no solutions: A112954(a(n))=0. - Enrique Pérez Herrero, May 12 2012

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]], Denominator[BernoulliB[4# ]]==30&] (* T. D. Noe, Feb 19 2004 *)
    Select[Prime[Range[100]],!PrimeQ[4#+1]&&!PrimeQ[2#+1]||(#==2)&] (* Enrique Pérez Herrero, Aug 16 2011 *)

A169980 Numerator(Bernoulli(2n)) mod denominator(Bernoulli(2n)).

Original entry on oeis.org

0, 1, 29, 1, 29, 5, 2039, 1, 463, 775, 289, 17, 2039, 1, 811, 12899, 463, 1, 1280537, 1, 11519, 1, 637, 41, 31933, 5, 1507, 775, 811, 53, 34488049, 1, 463, 62483, 29, 289, 91560011, 1, 29, 37, 182293, 77, 2346073, 1, 56003, 230759, 1333, 1, 3051091, 1, 28859, 61, 1507
Offset: 0

Views

Author

Robert G. Wilson v, Aug 19 2010

Keywords

Comments

From Robert G. Wilson v, Aug 27 2010: (Start)
From the von Staudt-Clausen theorem, denominator(B_2n) = product of primes p such that (p-1)|2n.
Values sorted: 1, 5, 17, 29, 37, 41, 49, 53, 61, 65, 77, 101, 137, 161, 169, 173, 181, 185, 221, 229, ..., .
a(n)== 1 for n's: 1, 3, 7, 13, 17, 19, 21, 31, 37, 43, 47, 49, 57, 59, 61, 67, 71, 73, 79, 91, 93, 97, ..., .
a(n)== 5 for n's: 5, 25, 85, 185, 235, 295, 305, 335, 355, 365, 395, 425, 505, 535, 635, 685, 695, ..., . A051229
a(n)==17 for n's: 11, 77, 87, 121, 143, 187, 407, 517, 539, 649, 671, 737, 781, 847, 869, 1067, 1111, ..., .
a(n)==29 for n's: 2, 4, 34, 38, 62, 76, 94, 118, 122, 124, 142, 188, 202, 206, 214, 218, 236, 244, ..., . A051225
a(n)==37 for n's: 39, 507, 1209, 1677, 3783, 4251, 5421, 5811, 6123, 6357, 6513, 7526, 7682, 7760, 8228, ..., .
a(n)==41 for n's: 23, 123, 161, 391, 437, 529, 851, 1081, 1127, 1357, 1403, 1633, 1817, 2323, 2369, 2461, ..., .
a(n)==49 for n's: 55, 275, 605, 2035, 3025, 3355, 3685, 3905, 4345, 5555, 5885, 6985, 7535, 7645, 8195, ..., .
a(n)==53 for n's: 29, 203, 377, 493, 841, 899, 1073, 1247, 1363, 1711, 1943, 2059, 2117, 2813, 2929, 2987, ..., .
a(n)==61 for n's: 51, 867, 2193, 3009, 3417, 6477, 7089, 8007, 8313, 8517, 10047, 10149, 11577, 11679, ..., .
a(n)==65 for n's: 159, 6837, 8427, 9381, 11289, 12561, 15423, 17331, 23691, 25917, 26553, 30687, 31323, ..., .
a(n)==77 for n's: 41, 287, 533, 697, 1517, 1681, 1927, 2419, 2747, 2911, 3239, 3731, 3977, 4141, 4387, ..., .
(End)

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = BernoulliB[2 n]}, Mod[Numerator@b, Denominator@b]]; Array[f, 53, 0] (* Robert G. Wilson v, Aug 27 2010 *)
  • PARI
    a(n) = my(b = bernfrac(2*n)); numerator(b) % denominator(b); \\ Michel Marcus, Mar 15 2015

Formula

A000367(n) mod A002445(n). [Robert G. Wilson v, Aug 27 2010]

A081863 Largest integer m such that m divides (sigma_(2n+1)(2k-1)-sigma(2k-1)) for all k>=1.

Original entry on oeis.org

24, 240, 168, 480, 264, 21840, 24, 16320, 3192, 2640, 552, 43680, 24, 6960, 57288, 32640, 24, 15353520, 24, 216480, 7224, 5520, 1128, 1485120, 264, 12720, 3192, 13920, 1416, 454293840, 24, 65280, 258888, 240, 18744, 2241613920, 24, 240, 13272, 7360320, 1992
Offset: 1

Views

Author

Benoit Cloitre, Apr 12 2003

Keywords

Comments

a(n)==0 mod 24. It seems that a(n)==0 (mod 2n+1) if and only if 2n+1 is an odd prime.
It appears that a(n)=24 for n in A045979, a(n)=168 for n in A051227, a(n)=264 for n in A051229, and a(n)=240 or 480 if n is in A051225. - Michel Marcus, Dec 07 2013

Crossrefs

Cf. A000203.

Programs

  • PARI
    ds(n, k) = sigma(2*k-1, 2*n+1) - sigma(2*k-1);
    a(n) = {my(m = ds(n, 1)); for (k=2, 100, m = gcd(m, ds(n, k));); m;} \\ Script computes gcd of 100 terms; for current data, 10 terms are actually sufficient; is there a better way? - Michel Marcus, Dec 07 2013

Extensions

a(12) corrected and more terms from Michel Marcus, Dec 07 2013

A043298 Numbers n such that B(6*n) has denominator 42 where B(2k) are the Bernoulli numbers.

Original entry on oeis.org

1, 19, 31, 43, 59, 67, 71, 79, 97, 109, 127, 139, 149, 157, 163, 167, 193, 197, 199, 211, 223, 227, 229, 269, 307, 317, 337, 349, 353, 361, 379, 383, 389, 401, 409, 421, 433, 439, 449, 457, 463, 479, 487, 499, 521, 523, 541, 547, 563, 569, 571, 587, 589, 599
Offset: 1

Views

Author

Benoit Cloitre, Mar 24 2002

Keywords

Comments

Except for 1 and 361=19^2 terms listed are primes.
Most a(n) are primes p such that 2p+1 is composite A053176. Nonprime a(n) (except a(1) = 1) are the powers or the products of primes from a(n). For example, 361 = 19^2, 589 = 19*31, 961 = 31^2, 1333 = 31*43, 1849 = 43^2, 2071 = 19*109, 2077 = 31*67, 2201 = 31*71, 2449 = 31*79, 2537 = 43*59, 2641 = 19*139, 2881 = 43*67, 2983 = 19*157, 3053 = 43*71, 3173 = 19*167, ..., 6859 = 19^3. - Alexander Adamchuk, Jul 28 2006

Crossrefs

Programs

  • Mathematica
    Do[s=1+Divisors[n]; s1=Flatten[Position[PrimeQ[s], True]]; s2=Part[s, s1]; If[Equal[s2, {2, 3, 7}], Print[n/6]], {n, 1, 10000}] (* Alexander Adamchuk, Jul 28 2006 *)
    Select[Range[600],Denominator[BernoulliB[6#]]==42&] (* Harvey P. Dale, Jan 09 2024 *)

Extensions

Corrected and extended by Ralf Stephan, Oct 21 2002
More terms from Alexander Adamchuk, Jul 28 2006

A272383 Numbers n such that Bernoulli number B_{n} has denominator 3318.

Original entry on oeis.org

78, 1014, 2418, 3354, 7566, 8502, 10842, 11622, 12246, 12714, 13026, 15054, 15366, 15522, 16458, 17394, 23946, 26286, 27222, 27534, 29562, 29874, 30342, 31434, 31902, 33774, 34242, 35646, 36114, 40794, 42198, 43602, 44538, 47814, 48126, 48282, 49218, 50154, 52494, 55302, 57174, 57642, 59046, 59982
Offset: 1

Views

Author

Paolo P. Lava, Apr 28 2016

Keywords

Comments

3318 = 2 * 3 * 7 * 79.
All terms are multiples of a(1) = 78.
For these numbers numerator(B_{n}) mod denominator(B_{n}) = 37.

Examples

			Bernoulli B_{78} is 414846365575400828295179035549542073492199375372400483487/3318, hence 78 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,3318);
  • Mathematica
    Select[78 Range@ 800, Denominator@ BernoulliB@ # == 3318 &] (* Michael De Vlieger, Apr 28 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, if(denominator(bernfrac(n)) == 3318, print1(n, ", "))); \\ Altug Alkan, Apr 28 2016
    
  • Python
    from sympy import divisors, isprime
    A272383_list = []
    for i in range(78, 10**6, 78):
        for d in divisors(i):
            if d not in (1,2,6,78) and isprime(d+1):
                break
        else:
            A272383_list.append(i) # Chai Wah Wu, May 02 2016

Extensions

a(9)-a(22) from Altug Alkan, Apr 28 2016
More terms from Michael De Vlieger, Apr 28 2016

A295587 Numbers k such that Bernoulli number B_{k} has denominator 13530.

Original entry on oeis.org

40, 6680, 7880, 8920, 9080, 10280, 12520, 12680, 14120, 15320, 15560, 18280, 20840, 21640, 22760, 23480, 25720, 26440, 28040, 30040, 30280, 31880, 33080, 33560, 34520, 35240, 35480, 36280, 38680, 39640, 42040, 43880, 44360, 46120, 46520, 46840, 47240, 47720, 48520
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

13530 = 2*3*5*11*41.
All terms are multiples of a(1) = 40.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 11519.

Examples

			Bernoulli B_{40} is -261082718496449122051/13530, hence 40 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,13530);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 41}:
    select(filter, [seq(i, i=1..10^5)]);
  • Mathematica
    Select[Range[50000],Denominator[BernoulliB[#]]==13530&] (* Harvey P. Dale, Jul 29 2025 *)

A295588 Numbers k such that Bernoulli number B_{k} has denominator 14322.

Original entry on oeis.org

30, 1770, 3810, 4170, 4470, 4890, 5910, 5970, 6810, 8070, 9210, 10590, 11370, 11670, 12030, 12990, 13470, 13890, 14370, 14970, 15630, 16890, 17070, 17610, 18510, 18570, 19290, 19410, 20190, 20310, 21270, 22710, 24810, 25710, 26310, 27570, 27870, 29010, 29490, 29730
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

14322 = 2*3*7*11*31.
All terms are multiples of a(1) = 30.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 12899.

Examples

			Bernoulli B_{30} is 8615841276005/14322, hence 30 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,14322);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 7, 11, 31}:
    select(filter, [seq(i, i=1..10^5)]);

A295589 Numbers k such that Bernoulli number B_{k} has denominator 33330.

Original entry on oeis.org

100, 1700, 7100, 16700, 22300, 25700, 28300, 31300, 31700, 33100, 35300, 37900, 38300, 38900, 39700, 44900, 45700, 47900, 52100, 56900, 58700, 60700, 66100, 75100, 75700, 78700, 79700, 83900, 85700, 85900, 88100, 90700, 96700, 99100
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

33330= 2*3*5*11*101.
All terms are multiples of a(1) = 100.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 28859.

Examples

			Bernoulli B_{100} is
-945980378191221252952274330694937218727028415330669361333856962043113954151972 47711/33330, hence 100 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 33330);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 11, 101}:
    select(filter, [seq(i, i=1..10^5)]);
  • Mathematica
    Select[Range[100,100000,100],Denominator[BernoulliB[#]]==33330&] (* Harvey P. Dale, Aug 05 2022 *)

A295590 Numbers k such that Bernoulli number B_{k} has denominator 46410.

Original entry on oeis.org

48, 10128, 16944, 21072, 25008, 28176, 31056, 33648, 35184, 39696, 42288, 52656, 55824, 59952, 60432, 62448, 71664, 73104, 77808, 78096, 82704, 83568, 84432, 91824, 93648, 98544, 100176, 100272, 102288, 107664, 108912, 110256, 110832, 112368, 114096, 117168, 120144
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

46410 = 2*3*5*7*13*17.
All terms are multiples of a(1) = 48.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 31933.

Examples

			46410 = 2*3*5*7*13*17.
Bernoulli B_{48} is -5609403368997817686249127547/46410, hence 48 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,64722);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17}:
    select(filter, [seq(i, i=1..10^5)]);
  • Mathematica
    Select[48*Range[2600],Denominator[BernoulliB[#]]==46410&] (* Harvey P. Dale, May 17 2020 *)

A295591 Numbers k such that Bernoulli number B_{k} has denominator 61410.

Original entry on oeis.org

88, 968, 5192, 5368, 13816, 15928, 19624, 19976, 22616, 23144, 23848, 24904, 27368, 27544, 27896, 29656, 31064, 33704, 34936, 38632, 40216, 40568, 40744, 45848, 46024, 48136, 49544, 50248, 51656, 53416, 56584, 56936, 57112, 59048, 60808, 61688, 67672, 68024, 71368
Offset: 1

Views

Author

Paolo P. Lava, Nov 24 2017

Keywords

Comments

61410 = 2*3*5*23*89.
All terms are multiples of a(1) = 88.
For these numbers numerator(B_{k}) mod denominator(B_{k}) = 56003.

Examples

			Bernoulli B_{88} is -1311426488674017507995511424019311843345750275572028644296919890574047/61410 hence 88 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h) local n;  for n from 2 by 2 to q do
    if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 61410);
    # Alternative: # according to Robert Israel code in A282773
    with(numtheory): filter:= n ->
    select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 23, 89}:
    select(filter, [seq(i, i=1..10^5)]);
  • PARI
    isok(n) = denominator(bernfrac(n)) == 61410; \\ Michel Marcus, Jan 07 2018
Previous Showing 21-30 of 38 results. Next