cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A217776 a(n) = n*(n+1) + (n+2)*(n+3) + (n+4)*(n+5) + (n+6)*(n+7).

Original entry on oeis.org

68, 100, 140, 188, 244, 308, 380, 460, 548, 644, 748, 860, 980, 1108, 1244, 1388, 1540, 1700, 1868, 2044, 2228, 2420, 2620, 2828, 3044, 3268, 3500, 3740, 3988, 4244, 4508, 4780, 5060, 5348, 5644, 5948, 6260, 6580, 6908, 7244, 7588, 7940, 8300, 8668, 9044, 9428
Offset: 0

Views

Author

Jon Perry, Mar 24 2013

Keywords

Examples

			a(1) = 1*2 + 3*4 + 5*6 + 7*8 = 2 + 12 + 30 + 56 = 100.
		

Crossrefs

Cf. A020742, A027690, A051890 (two pairs), A217775 (3 pairs).

Programs

  • GAP
    List([0..50], n-> (2*n+7)^2+19); # G. C. Greubel, Aug 27 2019
  • JavaScript
    for (j=0;j<50;j++) {
    a=j*(j+1)+(j+2)*(j+3)+(j+4)*(j+5)+(j+6)*(j+7);
    document.write(a+", ");
    }
    
  • Magma
    [(2*n+7)^2+19: n in [0..50]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    seq((2*n+7)^2+19, n=0..50); # G. C. Greubel, Aug 27 2019
  • Mathematica
    (2*Range[50] +5)^2 +19 (* G. C. Greubel, Aug 27 2019 *)
    Table[4n^2+28n+68,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{68,100,140},50] (* Harvey P. Dale, Jan 15 2020 *)
  • PARI
    a(n)=4*n^2+28*n+68 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [(2*n+7)^2+19 for n in (0..50)] # G. C. Greubel, Aug 27 2019
    

Formula

From Bruno Berselli, Mar 29 2013: (Start)
G.f.: 4*(17-26*x+11*x^2)/(1-x)^3.
a(n) = 4*n^2 + 28*n + 68.
a(n) = 4*A027690(n+3) = A020742(n)^2 + 19. (End)
E.g.f.: 4*(17 +8*x +x^2)*exp(x). - G. C. Greubel, Aug 27 2019

A254527 Total number of points on a sphere when both poles are on an x by x grid where x=8*n+1.

Original entry on oeis.org

6, 26, 62, 114, 182, 266, 366, 482, 614, 762, 926, 1106, 1302, 1514, 1742, 1986, 2246, 2522, 2814, 3122, 3446, 3786, 4142, 4514, 4902, 5306, 5726, 6162, 6614, 7082, 7566, 8066, 8582, 9114, 9662, 10226, 10806, 11402, 12014, 12642, 13286, 13946, 14622, 15314
Offset: 1

Views

Author

Thomas Olson, Jan 31 2015

Keywords

Comments

Maximum number of regions formed by n circles and n ellipses in the plane. - Ivan N. Ianakiev, Sep 21 2019
Number of points on a sphere whose longitude and latitude are both multiples of (90 degrees)/n, including the poles. - Jianing Song, Aug 28 2022

Crossrefs

Programs

  • Mathematica
    Table[8*n^2  - 4*n + 2,{n,1,44}] (* Ivan N. Ianakiev, Sep 21 2019 *)
  • PARI
    vector(50, n, 8*n^2 - 4*n + 2) \\ Michel Marcus, Feb 08 2015
    
  • PARI
    Vec(-2*x*(x+1)*(x+3)/(x-1)^3 + O(x^100)) \\ Colin Barker, Aug 09 2015

Formula

a(n) = 8*n^2 - 4*n + 2.
From Colin Barker, Aug 09 2015: (Start)
a(n) = 2*A054554(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: -2*x*(x+1)*(x+3) / (x-1)^3.
(End)
E.g.f.: -2 + exp(x)*(2 + 4*x + 8*x^2). - Stefano Spezia, Sep 21 2019
a(n) = A051890(2*n). - Jianing Song, Aug 28 2022

A294774 a(n) = 2*n^2 + 2*n + 5.

Original entry on oeis.org

5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0

Views

Author

Bruno Berselli, Nov 08 2017

Keywords

Comments

This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that:
2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841.

Crossrefs

1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216.
Second column of Mathar's array in A016813 (Comments section).
Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1).
Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9).

Programs

  • Maple
    seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
  • Mathematica
    Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3.
E.g.f.: (5 + 4*x + 2*x^2)*exp(x).
a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1).
n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0.
a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020

A199855 Inverse permutation to A210521.

Original entry on oeis.org

1, 4, 2, 5, 3, 6, 11, 7, 12, 8, 13, 9, 14, 10, 15, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42, 34, 43, 35, 44, 36, 45, 56, 46, 57, 47, 58, 48, 59, 49, 60, 50, 61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66, 79
Offset: 1

Views

Author

Boris Putievskiy, Feb 04 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2), T(1,3), T(3,1),
...
T(2,n-1), T(4,n-3), T(6,n-5), ..., T(n,1),
T(2,n), T(4,n-2), T(6,n-4), ..., T(n,2),
T(1,n), T(3,n-2), T(5,n-4), ..., T(n-1,2),
T(1,n+1), T(3,n-1), T(5,n-3), ..., T(n+1,1),
...
The order of the list elements of adjacent antidiagonals. Let m be a positive integer.
Movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(2,2*m-1) to T(2*m,1) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(2,2*m) to T(2*m,2) length of step is 2,
movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(1,2*m) to T(2*m-1,2) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(1,2*m+1) to T(2*m+1,1) length of step is 2.
Table contains:
row 1 is alternation of elements A001844 and A084849,
row 2 is alternation of elements A130883 and A058331,
row 3 is alternation of elements A051890 and A096376,
row 4 is alternation of elements A033816 and A005893,
row 6 is alternation of elements A100037 and A093328;
row 5 accommodates elements A097080 in odd places,
row 7 accommodates elements A137882 in odd places,
row 10 accommodates elements A100038 in odd places,
row 14 accommodates elements A100039 in odd places;
column 1 is A093005 and alternation of elements A000384 and A001105,
column 2 is alternation of elements A046092 and A014105,
column 3 is A105638 and alternation of elements A014106 and A056220,
column 4 is alternation of elements A142463 and A014107,
column 5 is alternation of elements A091823 and A054000,
column 6 is alternation of elements A090288 and |A168244|,
column 8 is alternation of elements A059993 and A033537;
column 7 accommodates elements A071355 in odd places,
column 9 accommodates elements |A147973| in even places,
column 10 accommodates elements A139570 in odd places,
column 13 accommodates elements A130861 in odd places.

Examples

			The start of the sequence as table:
   1,  4,  5,  11,  13,  22,  25,  37,  41,  56,  61, ...
   2,  3,  7,   9,  16,  19,  29,  33,  46,  51,  67, ...
   6, 12, 14,  23,  26,  38,  42,  57,  62,  80,  86, ...
   8, 10, 17,  20,  30,  34,  47,  52,  68,  74,  93, ...
  15, 24, 27,  39,  43,  58,  63,  81,  87, 108, 115, ...
  18, 21, 31,  35,  48,  53,  69,  75,  94, 101. 123, ...
  28, 40, 44,  59,  64,  82,  88, 109, 116, 140, 148, ...
  32, 36, 49,  54,  70,  76,  95, 102, 124, 132, 157, ...
  45, 60, 65,  83,  89, 110, 117, 141, 149, 176, 185, ...
  50, 55, 71,  77,  96, 103, 125, 133, 158, 167, 195, ...
  66, 84, 90, 111, 118, 142, 150, 177, 186, 216, 226, ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   4,  2;
   5,  3,  6;
  11,  7, 12,  8;
  13,  9, 14, 10, 15;
  22, 16, 23, 17, 24, 18;
  25, 19, 26, 20, 27, 21, 28;
  37, 29, 38, 30, 39, 31, 40, 32;
  41, 33, 42, 34, 43, 35, 44, 36, 45;
  56, 46, 57, 47, 58, 48, 59, 49, 60, 50;
  61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66;
  ...
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of  triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of  triangle array, located above.
   1;
   4, 2, 5, 3, 6;
  11, 7,12, 8,13, 9,14,10,15;
  22,16,23,17,24,18,25,19,26,20,27,21,28;
  37,29,38,30,39,31,40,32,41,33,42,34,43,35,44,36,45;
  56,46,57,47,58,48,59,49,60,50,61,51,62,52,63,53,64,54,65,55,66;
  ...
Row number r contains permutation numbers 4*r-3 from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-3*r+2,2*r*r-5*r+4, 2*r*r-3*r+3, 2*r*r-5*r+5, 2*r*r-3*r+4, 2*r*r-5*r+6, ..., 2*r*r-3*r+1, 2*r*r-r.
...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=(2*j**2+(4*i-5)*j+2*i**2-3*i+2+(2+(-1)**j)*((1-(t+1)*(-1)**i)))/4

Formula

T(n,k) = (2*k^2+(4*n-5)*k+2*n^2-3*n+2+(2+(-1)^k)*((1-(k+n-1)*(-1)^i)))/4.
a(n) = (2*j^2+(4*i-5)*j+2*i^2-3*i+2+(2+(-1)^j)*((1-(t+1)*(-1)^i)))/4, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((sqrt(8*n-7) - 1)/2).

A221216 T(n,k) = ((n+k)^2-2*(n+k)+4-(3*n+k-2)*(-1)^(n+k))/2; n , k > 0, read by antidiagonals.

Original entry on oeis.org

1, 5, 6, 4, 3, 2, 12, 13, 14, 15, 11, 10, 9, 8, 7, 23, 24, 25, 26, 27, 28, 22, 21, 20, 19, 18, 17, 16, 38, 39, 40, 41, 42, 43, 44, 45, 37, 36, 35, 34, 33, 32, 31, 30, 29, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 80
Offset: 1

Views

Author

Boris Putievskiy, Feb 22 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(3,1), T(2,2), T(1,3);
T(1,2), T(2,1);
. . .
T(2*m+1,1), T(2*m,2), T(2*m-1,3),...T(2,2*m), T(1,2*m+1);
T(1,2*m), T(2,2*m-1), T(3,2*m-2),...T(2*m-1,2),T(2*m,1);
. . .
First row contains antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read upwards.
Second row contains antidiagonal {T(1,2*m), ... T(2*m,1)}, read downwards.

Examples

			The start of the sequence as table:
  1....5...4..12..11..23..22...
  6....3..13..10..24..21..39...
  2...14...9..25..20..40..35...
  15...8..26..19..41..34..60...
  7...27..18..42..33..61..52...
  28..17..43..32..62..51..85...
  16..44..31..63..50..86..73...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  5,6;
  4,3,2;
  12,13,14,15;
  11,10,9,8,7;
  23,24,25,26,27,28;
  22,21,20,19,18,17,16;
  . . .
Row number r consecutive contains r numbers.
If r is odd,  row is decreasing.
If r is even, row is increasing.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-2*(t+2)+4-(3*i+j-2)*(-1)**t)/2

Formula

As table
T(n,k) = ((n+k)^2-2*(n+k)+4-(3*n+k-2)*(-1)^(n+k))/2.
As linear sequence
a(n) = (A003057(n)^2-2*A003057(n)+4-(3*A002260(n)+A004736(n)-2)*(-1)^A003056(n))/2; a(n) = ((t+2)^2-2*(t+2)+4-(i+3*j-2)*(-1)^t)/2,
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A221217 T(n,k) = ((n+k)^2-2*n+3-(n+k-1)*(1+2*(-1)^(n+k)))/2; n , k > 0, read by antidiagonals.

Original entry on oeis.org

1, 6, 5, 4, 3, 2, 15, 14, 13, 12, 11, 10, 9, 8, 7, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 91
Offset: 1

Views

Author

Boris Putievskiy, Feb 22 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(3,1), T(2,2), T(1,3);
T(2,1), T(1,2);
. . .
T(2*m+1,1), T(2*m,2), T(2*m-1,3),...T(1,2*m+1);
T(2*m,1), T(2*m-1,2), T(2*m-2,3),...T(1,2*m);
. . .
First row contains antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read upwards.
Second row contains antidiagonal {T(1,2*m), ... T(2*m,1)}, read upwards.

Examples

			The start of the sequence as table:
  1....6...4..15..11..28..22...
  5....3..14..10..27..21..44...
  2...13...9..26..20..43..35...
  12...8..25..19..42..34..63...
  7...24..18..41..33..62..52...
  23..17..40..32..61..51..86...
  16..39..31..60..50..85..73...
  . . .
The start of the sequence as triangle array read by rows:
  1;
  6,5;
  4,3,2;
  15,14,13,12;
  11,10,9,8,7;
  28,27,26,25,24,23;
  22,21,20,19,18,17,16;
  . . .
Row number r consecutive contains r numbers in decreasing order.
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-2*i+3-(t+1)*(1+2*(-1)**t))/2

Formula

As table
T(n,k) = ((n+k)^2-2*n+3-(n+k-1)*(1+2*(-1)^(n+k)))/2.
As linear sequence
a(n) = (A003057(n)^2-2*A002260(n)+3-A002024(n)*(1+2*(-1)^A003056(n)))/2;
a(n) = ((t+2)^2-2*i+3-(t+1)*(1+2*(-1)**t))/2, where i=n-t*(t+1)/2,
j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A356799 Table read by antidiagonals: T(n,k) (n >= 2, k >= 1) is the number of regions formed in a regular 2n-gon by straight line segments when connecting the k+1 points that divide each side into k equal parts to the equivalent point on the side diagonally opposite.

Original entry on oeis.org

1, 4, 13, 9, 24, 25, 16, 55, 48, 41, 25, 66, 105, 70, 61, 36, 121, 144, 171, 108, 85, 49, 126, 233, 220, 253, 140, 113, 64, 211, 288, 381, 312, 351, 192, 145, 81, 204, 409, 450, 565, 448, 465, 234, 181, 100, 325, 480, 671, 636, 785, 608, 595, 300, 221, 121, 300, 633, 760, 997, 924, 1041, 738, 741, 352, 265
Offset: 2

Views

Author

Scott R. Shannon, Aug 28 2022

Keywords

Comments

Many rows and columns in the table appear to be given by a quadratic in even and odd values of k and n; see the Formula section. The exceptions are for rows with n mod 6 = 0 for even k, and for columns with even k, formulas for which are unknown.

Examples

			The table begins:
    1,   4,    9,   16,   25,   36,   49,    64,    81,   100,   121,   144, ...
   13,  24,   55,   66,  121,  126,  211,   204,   325,   300,   463,   414, ...
   25,  48,  105,  144,  233,  288,  409,   480,   633,   720,   905,  1008, ...
   41,  70,  171,  220,  381,  450,  671,   760,  1041,  1150,  1491,  1620, ...
   61, 108,  253,  312,  565,  636,  997,  1056,  1549,  1596,  2221,  2232, ...
   85, 140,  351,  448,  785,  924, 1387,  1568,  2157,  2380,  3095,  3360, ...
  113, 192,  465,  608, 1041, 1248, 1841,  2112,  2865,  3200,  4113,  4512, ...
  145, 234,  595,  738, 1333, 1512, 2359,  2556,  3673,  3870,  5275,  5454, ...
  181, 300,  741,  960, 1661, 1980, 2941,  3360,  4581,  5100,  6581,  7200, ...
  221, 352,  903, 1144, 2025, 2376, 3587,  4048,  5589,  6160,  8031,  8712, ...
  265, 432, 1081, 1344, 2425, 2784, 4297,  4704,  6697,  7152,  9625, 10080, ...
  313, 494, 1275, 1612, 2861, 3354, 5071,  5720,  7905,  8710, 11363, 12324, ...
  365, 588, 1485, 1904, 3333, 3948, 5909,  6720,  9213, 10220, 13245, 14448, ...
  421, 660, 1711, 2130, 3841, 4410, 6811,  7500, 10621, 11400, 15271, 16110, ...
  481, 768, 1953, 2496, 4385, 5184, 7777,  8832, 12129, 13440, 17441, 19008, ...
  545, 850, 2211, 2788, 4965, 5814, 8807,  9928, 13737, 15130, 19755, 21420, ...
  613, 972, 2485, 3096, 5581, 6444, 9901, 10944, 15445, 16668, 22213, 23544, ...
  .
  .
		

Crossrefs

Formula

T(2,k) = k^2.
Conjectured formula for the rows for odd values of k for n>=3:
T(n,k) = A000217(n-1)*k^2 + n^2*k + A000217(n-2) = (n^2 - n)*k^2/2 + n^2*k + (n^2 - 3n + 2)/2.
E.g., T(7,k) = A000217(6)*k^2 + 7^2*k + A000217(5) = 21k^2 + 49k + 15.
Conjectured formula for the rows for even values of k for n>=3:
For n mod 3 = 1 or n mod 3 = 2, T(n,k) = A000217(n-1)*k^2 + A265225(n-1)*k = (n^2 - n)*k^2/2 + (floor(n/2) + 1)*n*k.
E.g., T(10,k) = A000217(9)*k^2 + A265225(9)*k = 45k^2 + 60k.
For n mod 6 = 0, no formula is currently known.
For (n - 3) mod 6 = 0, T(n,k) = A000096(2n-3)*k^2/4 + A005563(n)*k/2 = (2n^2 - 3n)*k^2/4 + (n^2 + 2n)*k/2.
E.g., T(15,k) = 405k^2/4 + 255k/2.
Conjectured formula for the columns for odd values of k for n>=3:
T(n,k) = A001105((k+1)/2)*n^2 - A051890((k+1)/2)*n + 1 = (k^2 + 2k + 1)*n^2/2 - (k^2 + 3)*n/2 + 1.
E.g., T(n,9) = 50n^2 - 42n + 1.
Conjectured formula for T(n,2):
T(n,2) = 2*A249127(n) = 2*floor(3n/2)*n, for n>=3.
No formula is current known for the columns for even values of k for k>=4.

A361070 a(n) is the number of occurrences of n in A360923.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 7, 10, 12, 15, 19, 21, 27, 30, 35, 40, 44, 52, 56, 63, 70, 75, 85, 90, 100, 107, 115, 126, 132, 145, 153, 163, 175, 182, 199, 206, 220, 232, 242, 259, 268, 285, 297, 310, 328, 337, 359, 370, 387, 404, 416, 440, 451, 472, 489, 504, 528, 540
Offset: 0

Views

Author

Rémy Sigrist, Mar 01 2023

Keywords

Comments

For n > 0, the number of starting positions from Z^2 at distance n from (0, 0) appears to be A051890(n):
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . 5 6 6 6 6 6
. . . . . . . . . . . . . . . . . . . . 6 4 5 5 5 5 6 6 6 6 6
. . . . . . . . . . . . . . . . 6 5 3 4 4 4 5 5 5 5 6 6 6 6 .
. . . . . . . . . . . . 6 6 5 4 2 3 3 4 4 4 5 5 5 6 6 6 6 . .
. . . . . . . . . 6 6 5 5 4 3 1 2 3 3 4 4 5 5 5 6 6 6 . . . .
. . . . . . 6 6 6 5 5 4 4 3 2 0 2 3 4 4 5 5 6 6 6 . . . . . .
. . . . 6 6 6 5 5 5 4 4 3 3 2 1 3 4 5 5 6 6 . . . . . . . . .
. . 6 6 6 6 5 5 5 4 4 4 3 3 2 4 5 6 6 . . . . . . . . . . . .
. 6 6 6 6 5 5 5 5 4 4 4 3 5 6 . . . . . . . . . . . . . . . .
6 6 6 6 6 5 5 5 5 4 6 . . . . . . . . . . . . . . . . . . . .
6 6 6 6 6 5 . . . . . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The largest column of A360923 containing n appears to have index A002620(n).

Examples

			Square array A360923 begins as follows:
     0 2 3 4 4 5 5 6 6 6 7 7 7 8 8 8 8 .
     1 3 4 5 5 6 6 7 7 7 8 8 8 . . . . .
     4 5 6 6 7 7 8 8 8 . . . . .
     7 7 8 8 . . . . . .
     . . . . .
Hence a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2, a(4) = 4, a(5) = 5, a(6) = 7, a(7) = 10 and a(8) = 12.
		

Crossrefs

A386485 a(0) = 1; thereafter a(n) = 5*n^2 - 5*n + 2.

Original entry on oeis.org

1, 2, 12, 32, 62, 102, 152, 212, 282, 362, 452, 552, 662, 782, 912, 1052, 1202, 1362, 1532, 1712, 1902, 2102, 2312, 2532, 2762, 3002, 3252, 3512, 3782, 4062, 4352, 4652, 4962, 5282, 5612, 5952, 6302, 6662, 7032, 7412, 7802, 8202, 8612, 9032, 9462, 9902, 10352, 10812, 11282, 11762, 12252, 12752, 13262, 13782, 14312
Offset: 0

Views

Author

N. J. A. Sloane, Aug 18 2025

Keywords

Comments

Maximum number of regions that can be formed in the plane by drawing n regular pentagons (of any size). Differs from A062786 and A124080 by a small constant shift, but is included here because of its geometrical applications.

Crossrefs

Programs

  • Mathematica
    A386485[n_] := If[n == 0, 1, 5*n*(n - 1) + 2]; Array[A386485, 60, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 2, 12, 32}, 60] (* Paolo Xausa, Aug 18 2025 *)

Formula

G.f.: -(x^3+9*x^2-x+1)/(x-1)^3.
From Elmo R. Oliveira, Sep 04 2025: (Start)
E.g.f.: exp(x)*(2 + 5*x^2) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)

A077074 Least k such that Z(k,3) <= Z(n,4) where Z(m,s) = Sum_{i>=m} 1/i^s.

Original entry on oeis.org

2, 2, 3, 6, 9, 13, 17, 21, 26, 31, 37, 43, 49, 55, 62, 69, 76, 83, 91, 99, 107, 115, 123, 132, 141, 150, 159, 168, 178, 187, 197, 207, 218, 228, 239, 249, 260, 271, 282, 294, 305, 317, 328, 340, 352, 365
Offset: 0

Views

Author

Benoit Cloitre, Nov 29 2002

Keywords

Crossrefs

Cf. A051890 for least k such that Z(k,2) <= Z(n,3).

Programs

  • PARI
    u=3; v=4; a(n)=if(n<0,0,k=1; while((zeta(u)-sum(k=1,k-1,1/k^u))>(zeta(v)-sum(i=1,n-1,1/i^v)),k++); k)
Previous Showing 31-40 of 45 results. Next