cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A052065 a(n) is the first square root greater than 10^n such that a(n)^2 is a palfree square (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

13, 104, 1014, 10123, 101047, 1010456, 10104574, 101045587, 1010455851, 10104558492, 101045584913, 1010455848322, 10104558481373, 101045584813152, 1010455848130452, 10104558481304484
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A052066 Palfree squares whose root is the smallest possible greater than 10^n (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

169, 10816, 1028196, 102475129, 10210496209, 1021021327936, 102102415721476, 10210210652174569, 1021021026820134201, 102102102318249314064, 10210210230410293217569
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A052067 a(n) is the first cube root greater than 10^n such that a(n)^3 is a palfree cube (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

12, 102, 1008, 10091, 100698, 1007059, 10069605, 100695969, 1006958659, 10069585741, 100695847434, 1006958474563, 10069584743393, 100695847434688, 1006958474332019, 10069584743315203
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A052068 Palfree cubes whose root is the smallest possible greater than 10^n (palfree = contains no palindromic substring except single digits).

Original entry on oeis.org

1728, 1061208, 1024192512, 1027549183571, 1021086501268392, 1021326840189306379, 1021027182906953620125, 1021024718963175618538209, 1021021582763927831895785179
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Probably finite.

Crossrefs

Extensions

More terms from Keith Schneider (schneidk(AT)email.unc.edu), May 23 2007

A258032 Primes p such that p^3 with the rightmost digit removed is also prime.

Original entry on oeis.org

3, 17, 53, 113, 157, 233, 257, 277, 353, 359, 379, 397, 677, 877, 997, 1039, 1217, 1439, 1613, 1697, 1879, 1973, 1997, 2273, 2417, 2459, 2777, 3257, 3413, 3499, 3517, 3697, 3779, 4073, 4157, 4177, 4339, 4973, 4999, 5077, 5197, 5279, 5639, 5813, 5897, 6277, 6379
Offset: 1

Views

Author

K. D. Bajpai, May 16 2015

Keywords

Examples

			a(2) = 17 is prime: 17^3 = 4913. Removing rightmost digit gives 491 which is prime.
a(3) = 53 is prime: 53^3 = 148877. Removing rightmost digit gives 14887 which is prime.
		

Crossrefs

Programs

  • Haskell
    a258032 n = a258032_list !! (n-1)
    a258032_list = filter ((== 1) . a010051' . flip div 10. (^ 3)) a000040_list
    -- Reinhard Zumkeller, May 18 2015
  • Magma
    [p: p in PrimesUpTo(6500) |IsPrime(Floor(p^3/10))]; // Vincenzo Librandi, May 17 2015
    
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[Floor[(#^3)/10]] &]
  • PARI
    forprime(p=1,10000, if(isprime(floor((p^3)/10)), print1(p,", ")))
    

A173057 Partial sums of A024770.

Original entry on oeis.org

2, 5, 10, 17, 40, 69, 100, 137, 190, 249, 320, 393, 472, 705, 944, 1237, 1548, 1861, 2178, 2551, 2930, 3523, 4122, 4841, 5574, 6313, 7110, 9443, 11782, 14175, 16574, 19513, 22632, 25769, 29502, 33241, 37034, 40831, 46770, 53963, 61294, 68627
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2010

Keywords

Comments

Partial sums of right-truncatable primes, primes whose every prefix is prime (in decimal representation). The sequence has 83 terms. The subsequence of prime partial sums of right-truncatable primes begins: 2, 5, 17, 137, 1237, 1861, 2551, 199483. What is the largest value in the subsubsequence of right-truncatable prime partial sums of right-truncatable primes?

Examples

			a(50) = 2 + 3 + 5 + 7 + 23 + 29 + 31 + 37 + 53 + 59 + 71 + 73 + 79 + 233 + 239 + 293 + 311 + 313 + 317 + 373 + 379 + 593 + 599 + 719 + 733 + 739 + 797 + 2333 + 2339 + 2393 + 2399 + 2939 + 3119 + 3137 + 3733 + 3739 + 3793 + 3797 + 5939 + 7193 + 7331 + 7333 + 7393 + 23333 + 23339 + 23399 + 23993 + 29399 + 31193 + 31379.
		

Crossrefs

A060825 Smallest n-digit left truncatable prime of Henry VIII type.

Original entry on oeis.org

773, 3373, 15647, 121997, 1237547, 12184967, 126934673, 1231633967, 12181833347, 124627266947, 1213536676883, 13264242313613, 129456645661613, 1399335756373613, 12429121339693967, 198615345451813613, 1276812967623946997, 36484957213536676883, 315396334245663786197, 9918918997653319693967, 95918918997653319693967, 357686312646216567629137
Offset: 3

Views

Author

Lekraj Beedassy, Apr 30 2001

Keywords

Examples

			The 11-digit prime a(11) = 12181833347 is the smallest of its kind such that successive deleting of the leftmost digits produces the primes 2181833347, 181833347, 81833347, 1833347, 833347, 33347, 3347, 347, 47, 7.
		

References

  • S. Kahan and S. Weintraub, Left truncatable primes. Journal of Recreational Mathematics, vol. 29, no. 4 (1998), pp. 255-261.

Crossrefs

Extensions

a(2) removed, offset changed to 3 and a(19)-a(24) added using A055521 by Jinyuan Wang, Aug 07 2020

A173060 Partial sums of A024785.

Original entry on oeis.org

2, 5, 10, 17, 30, 47, 70, 107, 150, 197, 250, 317, 390, 473, 570, 683, 820, 987, 1160, 1357, 1580, 1863, 2176, 2493, 2830, 3177, 3530, 3897, 4270, 4653, 5050, 5493, 5960, 6483, 7030, 7643, 8260, 8903, 9550, 10203, 10876, 11559, 12302, 13075, 13872
Offset: 1

Views

Author

Jonathan Vos Post, Feb 08 2010

Keywords

Comments

Partial sums of left-truncatable primes. This sequence has 4260 terms. The subsequence of prime partial sums of left-truncatable primes begins 2, 5, 17, 47, 107, 197, 317, 683, 7643. The subsubsequence of left-truncatable prime partial sums of left-truncatable primes begins 2, 5, 197, 317.

Examples

			a(57) = 2 + 3 + 5 + 7 + 13 + 17 + 23 + 37 + 43 + 47 + 53 + 67 + 73 + 83 + 97 + 113 + 137 + 167 + 173 + 197 + 223 + 283 + 313 + 317 + 337 + 347 + 353 + 367 + 373 + 383 + 397 + 443 + 467 + 523 + 547 + 613 + 617 + 643 + 647 + 653 + 673 + 683 + 743 + 773 + 797 + 823 + 853 + 883 + 937 + 947 + 953 + 967 + 983 + 997 + 1223 + 1283 + 1367.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A024785(i) = SUM[i=1..n] {p prime, and every suffix of p in decimal expansion is prime, and no digits are zero}.
Previous Showing 11-18 of 18 results.