cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 119 results. Next

A329697 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k-(k/p), where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 2, 3, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 3, 4, 2, 3, 3, 4, 1, 4, 2, 2, 2, 3, 3, 3, 2, 4, 3, 4, 2, 3, 3, 4, 0, 3, 3, 4, 1, 4, 3, 4, 2, 3, 3, 3, 3, 4, 3, 4, 1, 4, 2, 3, 3, 2, 4, 4, 2, 3, 3, 4, 3, 4, 4, 4, 1, 2, 4, 4, 2
Offset: 1

Views

Author

Ali Sada and Robert G. Wilson v, Feb 28 2020

Keywords

Comments

From Antti Karttunen, Apr 07 2020: (Start)
Also the least number of iterations of nondeterministic map k -> k-(k/p) needed to reach a power of 2, when any prime factor p of k can be used. The minimal length path to the nearest power of 2 (= 2^A064415(n)) is realized whenever one uses any of the A005087(k) distinct odd prime factors of the current k, at any step of the process. For example, this could be done by iterating with the map k -> k-(k/A078701(k)), i.e., by using the least odd prime factor of k (instead of the largest prime).
Proof: Viewing the prime factorization of changing k as a multiset ("bag") of primes, we see that liquefying any odd prime p with step p -> (p-1) brings at least one more 2 to the bag, while applying p -> (p-1) to any 2 just removes it from the bag, but gives nothing back. Thus the largest (and thus also the nearest) power of 2 is reached by eliminating - step by step - all odd primes from the bag, but none of 2's, and it doesn't matter in which order this is done.
The above implies also that the sequence is totally additive, which also follows because both A064097 and A064415 are. That A064097(n) = A329697(n) + A054725(n) for all n > 1 can be also seen by comparing the initial conditions and the recursion formulas of these three sequences.
For any n, A333787(n) is either the nearest power of 2 reached (= 2^A064415(n)), or occurs on some of the paths from n to there.
(End)
A003401 gives the numbers k where a(k) = A005087(k). See also A336477. - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is {12, 8}, taking 2 iterations to reach 8 = 2^3. So a(15) is 2.
From _Antti Karttunen_, Apr 07 2020: (Start)
Considering all possible paths from 15 to 1 nondeterministic map k -> k-(k/p), where p can be any prime factor of k, we obtain the following graph:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \__  |  __/|
      \_|_/   |
        4     3
         \   /
          \ /
           2
           |
           1.
It can be seen that there's also alternative route to 8 via 10 (with 10 = 15-(15/3), where 3 is not the largest prime factor of 15), but it's not any shorter than the route via 12.
(End)
		

Crossrefs

Cf. A000079, A334101, A334102, A334103, A334104, A334105, A334106 for positions of 0 .. 6 in this sequence, and also array A334100.
Cf. A334099 (a right inverse, positions of the first occurrence of each n).
Cf. A334091 (first differences), A335429 (partial sums).
Cf. also A331410 (analogous sequence when using the map k -> k + k/p), A334861, A335877 (their sums and differences), see also A335878 and A335884, A335885.

Programs

  • Mathematica
    a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, n, # != 2^IntegerExponent[#, 2] &] -1; Array[a, 100]
  • PARI
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 07 2020
    
  • PARI
    up_to = 2^24;
    A329697list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2, up_to, v[n] = if(!bitand(n,n-1),0,1+vecmin(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };
    v329697 = A329697list(up_to);
    A329697(n) = v329697[n]; \\ Antti Karttunen, Apr 07 2020
    
  • PARI
    A329697(n) = if(n<=2,0, if(isprime(n), A329697(n-1)+1, my(f=factor(n)); (apply(A329697, f[, 1])~ * f[, 2]))); \\ Antti Karttunen, Apr 19 2020

Formula

From Antti Karttunen, Apr 07-19 2020: (Start)
a(1) = a(2) = 0; and for n > 2, a(p) = 1 + a(p-1) if p is an odd prime and a(n*m) = a(n) + a(m) if m,n > 1. [This is otherwise equal to the definition of A064097, except here we have a different initial condition, with a(2) = 0].
a(2n) = a(A000265(n)) = a(n).
a(p) = 1+a(p-1), for all odd primes p.
If A209229(n) == 1 [when n is a power of 2], a(n) = 0,
otherwise a(n) = 1 + a(n-A052126(n)) = 1 + a(A171462(n)).
Equivalently, for non-powers of 2, a(n) = 1 + a(n-(n/A078701(n))),
or equivalently, for non-powers of 2, a(n) = 1 + Min a(n - n/p), for p prime and dividing n.
a(n) = A064097(n) - A064415(n), or equally, a(n) = A064097(n) - A054725(n), for n > 1.
a(A019434(n)) = 1, a(A334092(n)) = 2, a(A334093(n)) = 3, etc. for all applicable n.
For all n >= 0, a(A334099(n)) = a(A000244(n)) = a(A000351(n)) = a(A001026(n)) = a(257^n) = a(65537^n) = n.
a(A122111(n)) = A334107(n), a(A225546(n)) = A334109(n).
(End)
From Antti Karttunen, Mar 16 2021: (Start)
a(n) = a(A336466(n)) + A087436(n) = A336396(n) + A087436(n).
a(A053575(n)) = A336469(n) = a(n) - A005087(n).
a(A147545(n)) = A000120(A147545(n)) - 1.
(End)

A241909 Self-inverse permutation of natural numbers: a(1)=1, a(p_i) = 2^i, and if n = p_i1 * p_i2 * p_i3 * ... * p_{ik-1} * p_ik, where p's are primes, with their indexes are sorted into nondescending order: i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(i1-1) * 3^(i2-i1) * 5^(i3-i2) * ... * p_k^(1+(ik-i_{k-1})). Here k = A001222(n) and ik = A061395(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 5, 6, 27, 32, 25, 64, 81, 18, 7, 128, 15, 256, 125, 54, 243, 512, 49, 12, 729, 10, 625, 1024, 75, 2048, 11, 162, 2187, 36, 35, 4096, 6561, 486, 343, 8192, 375, 16384, 3125, 50, 19683, 32768, 121, 24, 45, 1458, 15625, 65536, 21, 108, 2401
Offset: 1

Views

Author

Antti Karttunen, May 03 2014, partly inspired by Marc LeBrun's Jan 11 2006 message on SeqFan mailing list

Keywords

Comments

This permutation maps between the partitions as ordered in A112798 and A241918 (the original motivation for this sequence).
For all n > 2, A007814(a(n)) = A055396(n)-1, which implies that this self-inverse permutation maps between primes (A000040) and the powers of two larger than one (A000079(n>=1)), and apart from a(1) & a(2), this also maps each even number to some odd number, and vice versa, which means there are no fixed points after 2.
A122111 commutes with this one, that is, a(n) = A122111(a(A122111(n))).
Conjugates between A243051 and A242424 and other rows of A243060 and A243070.

Examples

			For n = 12 = 2 * 2 * 3 = p_1 * p_1 * p_2, we obtain by the first formula 2^(1-1) * 3^(1-1) * 5^(1+(2-1)) = 5^2 = 25. By the second formula, as n = 2^2 * 3^1, we obtain the same result, p_{1+2} * p_{2+1} = p_3 * p_3 = 25, thus a(12) = 25.
Using the product formula over the terms of row n of table A241918, we see, because 9450 = 2*3*3*3*5*5*7 = p_1^1 * p_2^3 * p_3^2 * p_4^1, that the corresponding row in A241918 is {2,5,7,7}, and multiplying p_2 * p_5 * p_7^2 yields 3 * 11 * 17 * 17 = 9537, thus a(9450) = 9537.
Similarly, for 9537, the corresponding row in A241918 is {1,2,2,2,3,3,4}, and multiplying p_1^1 * p_2^3 * p_3^2 * p_4^1, we obtain 9450 back.
		

Crossrefs

Cf. also A278220 (= A046523(a(n))), A331280 (its rgs_transform), A331299 (= min(n,a(n))).
{A000027, A122111, A241909, A241916} form a 4-group.

Programs

  • Haskell
    a241909 1 = 1
    a241909 n = product $ zipWith (^) a000040_list $ zipWith (-) is (1 : is)
                where is = reverse ((j + 1) : js)
                      (j:js) = reverse $ map a049084 $ a027746_row n
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Mathematica
    Array[If[# == 1, 1, Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[FactorInteger[#] /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]] &, 56] (* Michael De Vlieger, Jan 23 2020 *)
  • PARI
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m)); \\ Antti Karttunen, Jan 17 2020

Formula

If n is a prime with index i (p_i), then a(n) = 2^i, otherwise when n = p_i1 * p_i2 * p_i3 * ... p_ik, where p_i1, p_i2, p_i3, ..., p_ik are the primes present (not necessarily all distinct) in the prime factorization of n, sorted into nondescending order, a(n) = 2^(i1-1) * 3^(i2-i1) * 5^(i3-i2) * ... * p_k^(1+(ik-i_{k-1})).
Equally, if n = 2^k, then a(n) = p_k, otherwise, when n = 2^e1 * 3^e2 * 5^e3 * ... * p_k^{e_k}, i.e., where e1 ... e_k are the exponents (some of them possibly zero, except the last) of the primes 2, 3, 5, ... in the prime factorization of n, a(n) = p_{1+e1} * p_{1+e1+e2} * p_{1+e1+e2+e3} * ... * p_{e1+e2+e3+...+e_k}.
From the equivalence of the above two formulas (which are inverses of each other) it follows that a(a(n)) = n, i.e., that this permutation is an involution. For a proof, please see the attached notes.
The first formula corresponds to this recurrence:
a(1) = 1, a(p_k) = 2^k for primes with index k, otherwise a(n) = (A000040(A001222(n))^(A241917(n)+1)) * A052126(a(A052126(n))).
And the latter formula with this recurrence:
a(1) = 1, and for n>1, if n = 2^k, a(n) = A000040(k), otherwise a(n) = A000040(A001511(n)) * A242378(A007814(n), a(A064989(n))).
[Here A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
We also have:
a(1)=1, and for n>1, a(n) = Product_{i=A203623(n-1)+2..A203623(n)+1} A000040(A241918(i)).
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
For all n > 1, a(2n-1) = 2*a(A064216(n)).

Extensions

Typos in the name corrected by Antti Karttunen, May 31 2014

A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4
Offset: 1

Views

Author

Ali Sada, Jan 16 2020

Keywords

Comments

Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020
Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020
If and only if a(n) is equal to A005087(n), then sigma(2n) - sigma(n) is a power of 2. (See A336923, A046528). - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
		

Crossrefs

Cf. A000265, A005087, A006530 (greatest prime factor), A052126, A078701, A087436, A329662 (positions of records and the first occurrences of each n), A334097, A334098, A334108, A334861, A336467, A336921, A336922, A336923 (A046528).
Cf. array A335430, and its rows A335431, A335882, and also A335874.
Cf. also A329697 (analogous sequence when using the map k -> k - k/p), A335878.
Cf. also A330437, A335884, A335885, A336362, A336363 for other similar iterations.

Programs

  • Magma
    f:=func; g:=func; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do  s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 19 2020
    
  • Mathematica
    a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
  • PARI
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(1+f[k,1])))); }; \\ Antti Karttunen, Apr 30 2020

Formula

From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
a(n) = A334097(n) - A334098(n).
a(A122111(n)) = A334108(n).
(End)
a(n) = A334861(n) - A329697(n). - Antti Karttunen, May 14 2020
a(n) = a(A336467(n)) + A087436(n) = A336921(n) + A087436(n). - Antti Karttunen, Mar 16 2021

Extensions

Data section extended up to a(105) by Antti Karttunen, Apr 29 2020

A064097 A quasi-logarithm defined inductively by a(1) = 0 and a(p) = 1 + a(p-1) if p is prime and a(n*m) = a(n) + a(m) if m,n > 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 6, 6, 7, 6, 7, 5, 7, 6, 7, 6, 7, 7, 7, 6, 7, 7, 8, 7, 7, 8, 9, 6, 8, 7, 7, 7, 8, 7, 8, 7, 8, 8, 9, 7, 8, 8, 8, 6, 8, 8, 9, 7, 9, 8, 9, 7, 8, 8, 8, 8, 9, 8, 9, 7, 8, 8, 9, 8, 8, 9, 9, 8, 9, 8, 9, 9, 9, 10, 9, 7, 8, 9, 9, 8, 9, 8, 9, 8
Offset: 1

Views

Author

Thomas Schulze (jazariel(AT)tiscalenet.it), Sep 16 2001

Keywords

Comments

Note that this is the logarithm of a completely multiplicative function. - Michael Somos
Number of iterations of r -> r - (largest divisor d < r) needed to reach 1 starting at r = n. a(n) = a(n - A032742(n)) + 1 for n >= 2. - Jaroslav Krizek, Jan 28 2010
From Antti Karttunen, Apr 04 2020: (Start)
Krizek's comment above stems from the fact that n - n/p = (p-1)*(n/p), where p is the least prime dividing n [= A020639(n), thus n/p = A032742(n)] and because this is fully additive sequence we can write a(n) = a(p) + a(n/p) = (1+a(p-1)) + a(n/p) = 1 + a((p-1)*(n/p)) = 1 + a(n - n/p), for any composite n.
Note that in above formula p can be any prime factor of n, not only the smallest, which proves Robert G. Wilson v's comment in A333123 that all such iteration paths from n to 1 are of the same length, regardless of the route taken.
(End)
From Antti Karttunen, May 11 2020: (Start)
Moreover, those paths form the chains of a graded poset, which is also a lattice. See the Mathematics Stack Exchange link.
Keeping the formula otherwise same, but changing it for primes either as a(p) = 1 + a(A064989(p)), a(p) = 1 + a(floor(p/2)) or a(p) = 1 + a(A048673(p)) gives sequences A056239, A064415 and A334200 respectively.
(End)
a(n) is the number of iterations r->A060681(r) to reach 1 starting at r=n. - R. J. Mathar, Nov 06 2023

Examples

			a(19) = 6: 19 - 1 = 18; 18 - 9 = 9; 9 - 3 = 6; 6 - 3 = 3; 3 - 1 = 2; 2 - 1 = 1. That is a total of 6 iterations. - _Jaroslav Krizek_, Jan 28 2010
From _Antti Karttunen_, Apr 04 2020: (Start)
We can follow also alternative routes, where we do not always select the largest proper divisor to subtract, for example, from 19 to 1, we could go as:
19-1 = 18; 18-(18/3) = 12; 12-(12/2) = 6; 6-(6/3) = 4; 4-(4/2) = 2; 2-(2/2) = 1, or as
19-1 = 18; 18-(18/3) = 12; 12-(12/3) = 8; 8-(8/2) = 4; 4-(4/2) = 2; 2-(2/2) = 1,
both of which also have exactly 6 iterations.
(End)
		

Crossrefs

Similar to A061373 which uses the same recurrence relation but a(1) = 1.
Cf. A000079 (position of last occurrence), A105017 (position of records), A334197 (positions of record jumps upward).
Partial sums of A334090.
Cf. also A056239.

Programs

  • Haskell
    import Data.List (genericIndex)
    a064097 n = genericIndex a064097_list (n-1)
    a064097_list = 0 : f 2 where
       f x | x == spf  = 1 + a064097 (spf - 1) : f (x + 1)
           | otherwise = a064097 spf + a064097 (x `div` spf) : f (x + 1)
           where spf = a020639 x
    -- Reinhard Zumkeller, Mar 08 2013
    
  • Maple
    a:= proc(n) option remember;
          add((1+a(i[1]-1))*i[2], i=ifactors(n)[2])
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Apr 26 2019
    # alternative which can be even used outside this entry
    A064097 := proc(n)
            option remember ;
            add((1+procname(i[1]-1))*i[2], i=ifactors(n)[2]) ;
    end proc:
    seq(A064097(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    quasiLog := (Length@NestWhileList[# - Divisors[#][[-2]] &, #, # > 1 &] - 1) &;
    quasiLog /@ Range[1024]
    (* Terentyev Oleg, Jul 17 2011 *)
    fi[n_] := Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]; a[1] = 0; a[n_] := If[ PrimeQ@ n, a[n - 1] + 1, Plus @@ (a@# & /@ fi@ n)]; Array[a, 105] (* Robert G. Wilson v, Jul 17 2013 *)
    a[n_] := Length@ NestWhileList[# - #/FactorInteger[#][[1, 1]] &, n, # != 1 &] - 1; Array[a, 100] (* or *)
    a[n_] := a[n - n/FactorInteger[n][[1, 1]]] +1; a[1] = 0; Array[a, 100]  (* Robert G. Wilson v, Mar 03 2020 *)
  • PARI
    NN=200; an=vector(NN);
    a(n)=an[n];
    for(n=2,NN,an[n]=if(isprime(n),1+a(n-1), sumdiv(n,p, if(isprime(p),a(p)*valuation(n,p)))));
    for(n=1,100,print1(a(n)", "))
    
  • PARI
    a(n)=if(isprime(n), return(a(n-1)+1)); if(n==1, return(0)); my(f=factor(n)); apply(a,f[,1])~ * f[,2] \\ Charles R Greathouse IV, May 10 2016
    
  • Scheme
    (define (A064097 n) (if (= 1 n) 0 (+ 1 (A064097 (A060681 n))))) ;; After Jaroslav Krizek's Jan 28 2010 formula.
    (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742.
    ;; Antti Karttunen, Aug 23 2017

Formula

Conjectures: for n>1, log(n) < a(n) < (5/2)*log(n); lim n ->infinity sum(k=1, n, a(k))/(n*log(n)-n) = C = 1.8(4)... - Benoit Cloitre, Oct 30 2002
Conjecture: for n>1, floor(log_2(n)) <= a(n) < (5/2)*log(n). - Robert G. Wilson v, Aug 10 2013
a(n) = Sum_{k=1..n} a(p_k)*e_k if n is composite with factorization p_1^e_1 * ... * p_k^e_k. - Orson R. L. Peters, May 10 2016
From Antti Karttunen, Aug 23 2017: (Start)
a(1) = 0; for n > 1, a(n) = 1 + a(A060681(n)). [From Jaroslav Krizek's Jan 28 2010 formula in comments.]
a(n) = A073933(n) - 1. (End)
a(n) = A064415(n) + A329697(n) [= A054725(n) + A329697(n), for n > 1]. - Antti Karttunen, Apr 16 2020
a(n) = A323077(n) + A334202(n) = a(A052126(n)) + a(A006530(n)). - Antti Karttunen, May 12 2020

Extensions

More terms from Michael Somos, Sep 25 2001

A065770 Number of prime cascades to reach 1, where a prime cascade (A065769) is multiplicative with a(p(m)^k) = p(m-1) * p(m)^(k-1).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 3, 4, 5, 9, 4, 4, 6, 4, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 4, 13, 4, 14, 5, 4, 9, 15, 5, 5, 4, 7, 6, 16, 4, 5, 4, 8, 10, 17, 4, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 5, 21, 12, 4, 8, 5, 6, 22, 5, 5, 13, 23, 4, 7, 14, 10, 5, 24, 4, 6, 9, 11
Offset: 1

Views

Author

Henry Bottomley, Nov 19 2001

Keywords

Comments

It seems that a(n) <= A297113(n) for all n. Of the first 10000 positive natural numbers, 6454 are such that a(n) = A297113(n). - Antti Karttunen, Dec 31 2017
Also one plus the maximum number of unit steps East or South in the Young diagram of the integer partition with Heinz number n > 1, starting from the upper-left square and ending in a boundary square in the lower-right quadrant. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 06 2019

Examples

			a(50) = 4 since the cascade goes from 50 = 2^1 * 5^2 to 15 = 3^1 * 5^1 to 6 = 2^1 * 3^1 to 2 = 2^1 to 1.
From _Gus Wiseman_, Apr 06 2019: (Start)
The partition with Heinz number 7865 is (6,5,5,3), with diagram
  o o o o o o
  o o o o o
  o o o o o
  o o o
which has longest path from (1,1) to (5,3) of length 6, so a(7865) = 7.
(End)
		

Crossrefs

Cf. A065769.
Differs from A297113 for the first time at n=20, where a(20) = 3, while A297113(20) = 4.

Programs

  • Mathematica
    Table[If[n==1,0,Max@@Total/@Position[PadRight[ConstantArray[1,#]&/@Sort[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]],Greater]],1]-1],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
  • Scheme
    (definec (A065770 n) (if (= 1 n) 0 (+ 1 (A065770 (A065769 n))))) ;; Antti Karttunen, Dec 31 2017

Formula

Inverse of primes, powers of 2 and primorials in sense that a(A000040(n))=n; a(A000079(n))=n; a(A002110(n))=n. If n>0: a(3^n)=n+1; a(2^n*3^k)=n+k; a(p(k)^n)=n+k-1; a(n!)=A022559(n).
a(1) = 0; and for n > 1, a(n) = 1 + A065769(n). - Antti Karttunen, Dec 31 2017

A297113 a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 4, 4, 5, 9, 4, 4, 6, 4, 5, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 5, 13, 4, 14, 6, 4, 9, 15, 5, 5, 4, 7, 7, 16, 4, 5, 6, 8, 10, 17, 4, 18, 11, 5, 6, 6, 5, 19, 8, 9, 4, 20, 5, 21, 12, 4, 9, 5, 6, 22, 6, 5, 13, 23, 5, 7, 14, 10, 7, 24, 4, 6, 10, 11, 15, 8, 6, 25
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2017

Keywords

Comments

From Gus Wiseman, Apr 06 2019: (Start)
Also the number of squares in the Young diagram of the integer partition with Heinz number n that are graph-distance 1 from the lower-right boundary, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). For example, the partition (6,5,5,3) with Heinz number 7865 has diagram
o o o o o o
o o o o o
o o o o o
o o o
with inner rim
o
o
o o
o o o
of size 7, so a(7867) = 7.
(End)

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,PrimePi[FactorInteger[n][[-1,1]]]+PrimeOmega[n]-PrimeNu[n]],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A297113(n) = if(n<=2,n-1,if(n%2,1+A297113(A064989(n)), !(n%4)+A297113(n/2)));
    
  • PARI
    \\ More complex way, after Moebius transform:
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A297112(n) = sumdiv(n,d,moebius(n/d)*A156552(d));
    A297113(n) = if(1==n,0,1+valuation(A297112(n),2));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A297113 n) (cond ((<= n 2) (- n 1)) ((= 2 (modulo n 4)) (A297113 (/ n 2))) (else (+ 1 (A297113 (A252463 n))))))

Formula

a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)) .
For n > 1, a(n) = A001511(A297112(n)), where A297112(n) = Sum_{d|n} moebius(n/d)*A156552(d).
a(n) = A252464(n) - A297155(n).
For n > 1, a(n) = 1+A033265(A156552(n)) = 1+A297167(n) = A046660(n) + A061395(n). - Last two sums added by Antti Karttunen, Sep 02 2018
Other identities. For all n >= 1:
a(A000040(n)) = n. [Each n occurs for the first time at the n-th prime.]

A171462 Number of hands a bartender needs to have in order to win at the blind bartender's problem with n glasses in a cycle.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 6, 4, 6, 8, 10, 8, 12, 12, 12, 8, 16, 12, 18, 16, 18, 20, 22, 16, 20, 24, 18, 24, 28, 24, 30, 16, 30, 32, 30, 24, 36, 36, 36, 32, 40, 36, 42, 40, 36, 44, 46, 32, 42, 40, 48, 48, 52, 36, 50, 48, 54, 56, 58, 48, 60, 60, 54, 32, 60, 60, 66, 64, 66, 60, 70, 48, 72
Offset: 1

Views

Author

Richard Ehrenborg, Dec 09 2009

Keywords

Comments

For n greater than 1, the n-th entry is given by n*(1-1/p) where p is largest prime dividing n.

Examples

			a(4) = 2 since in the classical problem with 4 glasses on a tray, the blind bartender needs 2 hands.
		

References

  • W. T. Laaser and L. Ramshaw, Probing the Rotating Table, The Mathematical Gardner (edited by David A. Klarner), Prindle, Weber & Schmidt, Boston, Massachusetts, 1981, pages 285-307.

Crossrefs

Programs

  • Haskell
    a171462 n = div n p * (p - 1) where p = a006530 n
    -- Reinhard Zumkeller, Apr 06 2015
    
  • Mathematica
    {0}~Join~Array[# (1 - 1/FactorInteger[#][[-1, 1]]) &, 72, 2] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    a(n) = {if (n == 1, return (0)); f = factor(n); p = f[#f~,1]; return (n * (p - 1)/p);} \\ Michel Marcus, Jun 09 2013
    
  • Python
    from sympy import primefactors
    def a(n): return 0 if n == 1 else n - n//(primefactors(n)[-1])
    print([a(n) for n in range(1, 74)]) # Michael S. Branicky, Apr 19 2021

Formula

Conjecture: n > 1: k=1..n: a(n) = -n*min(A191898(n, k)/k). Verified up to n=10000. - Mats Granvik, Apr 19 2021
a(n) = n - A052126(n) = n - n/A006530(n). - Antti Karttunen, Jan 03 2024

A325134 a(1) = 1; a(n) = number of prime factors of n counted with multiplicity plus the largest prime index of n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 7, 6, 5, 5, 8, 5, 9, 6, 6, 7, 10, 6, 5, 8, 5, 7, 11, 6, 12, 6, 7, 9, 6, 6, 13, 10, 8, 7, 14, 7, 15, 8, 6, 11, 16, 7, 6, 6, 9, 9, 17, 6, 7, 8, 10, 12, 18, 7, 19, 13, 7, 7, 8, 8, 20, 10, 11, 7, 21, 7, 22, 14, 6, 11, 7, 9, 23
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
Also one plus the size of the largest hook contained in the Young diagram of the integer partition with Heinz number n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=1, 1, bigomega(n)+pi(max(factorset(n)[]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 03 2019
  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]],{n,100}]

Formula

a(n) = A001222(n) + A061395(n).
a(n) = A252464(n) + 1.

A335431 Numbers of the form q*(2^k), where q is one of the Mersenne primes (A000668) and k >= 0.

Original entry on oeis.org

3, 6, 7, 12, 14, 24, 28, 31, 48, 56, 62, 96, 112, 124, 127, 192, 224, 248, 254, 384, 448, 496, 508, 768, 896, 992, 1016, 1536, 1792, 1984, 2032, 3072, 3584, 3968, 4064, 6144, 7168, 7936, 8128, 8191, 12288, 14336, 15872, 16256, 16382, 24576, 28672, 31744, 32512, 32764, 49152, 57344, 63488, 65024, 65528, 98304, 114688, 126976, 130048, 131056, 131071
Offset: 1

Views

Author

Antti Karttunen, Jun 28 2020

Keywords

Comments

Numbers of the form 2^k * ((2^p)-1), where p is one of the primes in A000043, and k >= 0.
Numbers k such that A000265(k) is in A000668.
Numbers k for which A331410(k) = 1.
Numbers k that themselves are not powers of two, but for which A335876(k) = k+A052126(k) is [a power of 2].
Conjecture: This sequence gives all fixed points of map n -> A332214(n) and its inverse n -> A332215(n). See also notes in A029747 and in A163511.

Crossrefs

Cf. A000043, A000396 (even terms form a subsequence), A000668 (primes present), A335882, A341622.
Row 1 of A335430.
Positions of 1's in A331410, in A364260, and in A364251 (characteristic function).
Subsequence of A054784.

Programs

  • Mathematica
    qs = 2^MersennePrimeExponent[Range[6]] - 1; max = qs[[-1]]; Reap[Do[n = 2^k*q; If[n <= max, Sow[n]], {k, 0, Log2[max]}, {q, qs}]][[2, 1]] // Union (* Amiram Eldar, Feb 18 2021 *)
  • PARI
    A000265(n) = (n>>valuation(n,2));
    isA000668(n) = (isprime(n)&&!bitand(n,1+n));
    isA335431(n) = isA000668(A000265(n));

Formula

A332214(a(n)) = A332215(a(n)) = a(n) for all n.
Sum_{n>=1} 1/a(n) = 2 * A173898 = 1.0329083578... - Amiram Eldar, Feb 18 2021

A253560 Multiply n by its largest prime factor: a(n) = A006530(n) * n.

Original entry on oeis.org

1, 4, 9, 8, 25, 18, 49, 16, 27, 50, 121, 36, 169, 98, 75, 32, 289, 54, 361, 100, 147, 242, 529, 72, 125, 338, 81, 196, 841, 150, 961, 64, 363, 578, 245, 108, 1369, 722, 507, 200, 1681, 294, 1849, 484, 225, 1058, 2209, 144, 343, 250, 867, 676, 2809, 162, 605, 392, 1083, 1682, 3481, 300, 3721, 1922, 441
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Essentially the same as A129598, except that here we have a(1) = 1.
Cf. A070003 (same sequence without 1, sorted into ascending order).
Differs from A072995 for the first time at n=15, where a(15) = 75, while A072995(15) = 225.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006530(n) * n = A000040(A061395(n)) * n.
Other identities:
a(n) >= A253550(n) for all n >= 1.
a(n) = A129598(n) for all n >= 2.
A052126(a(n)) = n. [A052126 works as an inverse function for this injection.]
Previous Showing 21-30 of 119 results. Next