cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A327231 Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).

Original entry on oeis.org

0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A bridge is an edge whose removal disconnected the graph, while an endpoint is a vertex belonging to only one edge. The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Examples

			The a(2) = 1 through a(4) = 18 edge-sets:
  {12}  {12}  {12}
        {13}  {13}
        {23}  {14}
              {23}
              {24}
              {34}
              {12,13,24}
              {12,13,34}
              {12,14,23}
              {12,14,34}
              {12,23,34}
              {12,24,34}
              {13,14,23}
              {13,14,24}
              {13,23,24}
              {13,24,34}
              {14,23,24}
              {14,23,34}
		

Crossrefs

Column k = 1 of A327148.
The covering version is A327079.
Connected bridged graphs (spanning edge-connectivity 1) are A327071.
BII-numbers of set-systems with non-spanning edge-connectivity 1 are A327099.
Covering set-systems with non-spanning edge-connectivity 1 are A327129.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]

Formula

Binomial transform of A327079.

Extensions

Terms a(6) and beyond from Andrew Howroyd, Sep 11 2019

A327352 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 4, 1, 14, 4, 1, 83, 59, 23, 2, 1232, 2551, 2792, 887, 107, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Triangle begins:
     1
     1    1
     4    1
    14    4    1
    83   59   23    2
  1232 2551 2792  887  107   10    1
Row n = 3 counts the following antichains:
  {}             {{1,2,3}}      {{1,2},{1,3},{2,3}}
  {{1}}          {{1,2},{1,3}}
  {{2}}          {{1,2},{2,3}}
  {{3}}          {{1,3},{2,3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1},{2}}
  {{1},{3}}
  {{2},{3}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327355.
The unlabeled version is A327438.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],spanEdgeConn[Range[n],#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A327353 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of subsets of {1..n} with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 3, 8, 7, 3, 1, 53, 27, 45, 36, 6, 747, 511, 1497, 2085, 1540, 693, 316, 135, 45, 10, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 10 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other.
The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.

Examples

			Triangle begins:
    1
    1    1
    2    3
    8    7    3    1
   53   27   45   36    6
  747  511 1497 2085 1540  693  316  135   45   10    1
Row n = 3 counts the following antichains:
  {}             {{1}}      {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
  {{1},{2}}      {{2}}      {{1,2},{2,3}}
  {{1},{3}}      {{3}}      {{1,3},{2,3}}
  {{2},{3}}      {{1,2}}
  {{1},{2,3}}    {{1,3}}
  {{2},{1,3}}    {{2,3}}
  {{3},{1,2}}    {{1,2,3}}
  {{1},{2},{3}}
		

Crossrefs

Row sums are A014466.
Column k = 0 is A327354.
The covering case is A327357.
The version for spanning edge-connectivity is A327352.
The specialization to simple graphs is A327148, with covering case A327149, unlabeled version A327236, and unlabeled covering case A327201.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],eConn[#]==k&]],{n,0,4},{k,0,2^n}]//.{foe___,0}:>{foe}

A052448 Number of simple unlabeled n-node graphs of edge-connectivity 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 15, 121, 2159, 68715, 3952378, 389968005, 65161587084
Offset: 1

Views

Author

Eric W. Weisstein, May 08 2000

Keywords

Crossrefs

Column k=3 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A241703, A241704, A241705.

Extensions

a(8), a(9), a(10) from the Encyclopedia of Finite Graphs by Travis Hoppe and Anna Petrone, Apr 22 2014
a(11) by Jens M. Schmidt, Feb 18 2019
a(12) from Jens M. Schmidt's web page, Jan 10 2021

A241703 Number of simple unlabeled n-node graphs of edge-connectivity 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 25, 378, 14306, 1141575, 164245876, 39637942895
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=4 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241704, A241705.

Extensions

a(11) by Jens M. Schmidt, Feb 18 2019
a(12) from Jens M. Schmidt's web page, Jan 10 2021

A241704 Number of simple unlabeled n-node graphs of edge-connectivity 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 41, 1095, 104829, 21981199, 8077770931
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=5 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241703, A241705.

Extensions

a(11)-a(12) by Jens M. Schmidt, Feb 18 2019

A241705 Number of simple unlabeled n-node graphs of edge-connectivity 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 65, 3441, 857365, 487560158, 466534106494
Offset: 1

Views

Author

Travis Hoppe and Anna Petrone, Apr 27 2014

Keywords

Crossrefs

Column k=6 of A263296.
Cf. other edge-connectivity unlabeled graph sequences A052446, A052447, A052448, A241703, A241704.

Extensions

a(11)-a(13) by Jens M. Schmidt, Feb 20 2019

A327074 Number of unlabeled connected graphs with n vertices and exactly one bridge.

Original entry on oeis.org

0, 0, 1, 0, 1, 4, 25, 197, 2454, 48201, 1604016, 93315450, 9696046452, 1822564897453, 625839625866540, 395787709599238772, 464137745175250610865, 1015091996575508453655611, 4160447945769725861550193834, 32088553211819016484736085677320, 467409605282347770524641700949750858
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Unlabeled graphs with no bridges are counted by A007146 (unlabeled graphs with spanning edge-connectivity >= 2).

Crossrefs

The labeled version is A327073.
Unlabeled graphs with at least one bridge are A052446.
The enumeration of unlabeled connected graphs by number of bridges is A327077.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.

Programs

Formula

G.f.: (f(x)^2 + f(x^2))/2 where f(x) is the g.f. of A007145. - Andrew Howroyd, Aug 25 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 25 2019

A327235 Number of unlabeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 14, 49, 234, 1476, 15405, 307536, 12651788, 1044977929, 167207997404, 50838593828724, 29156171171238607, 31484900549777534887, 64064043979274771429379, 246064055301339083624989655, 1788069981480210465772374023323, 24641385885409824180500407923934750
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Examples

			The a(4) = 2 through a(6) = 14 edge-sets:
  {}       {}             {}
  {12,34}  {12,34}        {12,34}
           {12,35,45}     {12,34,56}
           {12,34,35,45}  {12,35,45}
                          {12,34,35,45}
                          {12,35,46,56}
                          {12,36,46,56}
                          {13,23,46,56}
                          {12,34,35,46,56}
                          {12,36,45,46,56}
                          {13,23,45,46,56}
                          {12,13,23,45,46,56}
                          {12,35,36,45,46,56}
                          {12,34,35,36,45,46,56}
		

Crossrefs

Unlabeled non-connected graphs are A000719.
Partial sums of A327075.
The labeled version is A327199.

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A327235(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        def a(n): return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n if n else 1
        return 1+b(n)-sum(a(i) for i in range(1,n+1)) # Chai Wah Wu, Jul 03 2024

Formula

a(n) = 1 + A000088(n) - Sum_{i = 1..n} A001349(i).

Extensions

a(20)-a(21) from Chai Wah Wu, Jul 03 2024
Previous Showing 11-20 of 24 results. Next