cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A127893 Riordan array (1/(1-x)^3, x/(1-x)^3).

Original entry on oeis.org

1, 3, 1, 6, 6, 1, 10, 21, 9, 1, 15, 56, 45, 12, 1, 21, 126, 165, 78, 15, 1, 28, 252, 495, 364, 120, 18, 1, 36, 462, 1287, 1365, 680, 171, 21, 1, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2007

Keywords

Comments

Inverse is A127894.
From Peter Bala, Jul 22 2014: (Start)
Let M denote the unsigned version of the lower unit triangular array A122432 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Examples

			Triangle begins
   1;
   3,    1;
   6,    6,     1;
  10,   21,     9,     1;
  15,   56,    45,    12,     1;
  21,  126,   165,    78,    15,     1;
  28,  252,   495,   364,   120,    18,     1;
  36,  462,  1287,  1365,   680,   171,    21,    1;
  45,  792,  3003,  4368,  3060,  1140,   231,   24,   1;
  55, 1287,  6435, 12376, 11628,  5985,  1771,  300,  27,  1;
  66, 2002, 12870, 31824, 38760, 26334, 10626, 2600, 378, 30, 1;
  ...
From _Peter Bala_, Jul 22 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
  / 1         \/1         \/1       \       / 1       \
  | 3  1      ||0  1      ||0 1      |      | 3  1    |
  | 6  3 1    ||0  3 1    ||0 0 1    |... = | 6  6 1  |
  |10  6 3 1  ||0  6 3 1  ||0 0 3 1  |      |10 21 9 1|
  |15 10 6 3 1||0 10 6 3 1||0 0 6 3 1|      |...      |
  |...        ||...       ||...      |      |...      |
(End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n+2*k+2,n-k)))); # Muniru A Asiru, Apr 30 2018
    
  • Magma
    [Binomial(n+2*k+2, n-k): k in [0..n], n in [0..10]]; // G. C. Greubel, Apr 29 2018
    
  • Maple
    seq(seq(binomial(n+2*k+2,n-k),k=0..n),n=0..10); # Robert Israel, Apr 28 2015
  • Mathematica
    Flatten@ Table[Binomial[n+2k-1, n-k], {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n+2*k+2, n-k), ", "))) \\ G. C. Greubel, Apr 29 2018
    
  • Sage
    flatten([[binomial(n+2*k+2,n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 16 2021

Formula

T(n,k) = binomial(n+2*k+2, n-k).
Sum_{k=0..n} T(n, k) = A052529(n+1) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A095263(n+1) (diagonal sums).
Recurrence: T(n+1, k+1) = Sum_{i = 0..n-k} binomial(i+2, 2)*T(n-i,k). - Peter Bala, Jul 22 2014
G.f.: 1/((1-x)^3-x*y). - Vladimir Kruchinin, Apr 27 2015

A055990 a(n) is its own 4th difference.

Original entry on oeis.org

1, 4, 14, 50, 181, 657, 2385, 8657, 31422, 114051, 413966, 1502555, 5453761, 19795288, 71850128, 260791401, 946583628, 3435774958, 12470688498, 45264335853, 164294064481, 596331286321, 2164478699633, 7856317702310, 28515747394555, 103502414271126
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

Comments

Number of compositions of 4*n-2 into parts 1 and 4. - Seiichi Manyama, Feb 03 2024

Crossrefs

Cf. A055988, A055989, A055991 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.
Cf. A003269.

Programs

  • Magma
    I:=[1, 4, 14, 50]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 06 2012
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-5*x+6*x^2-4*x^3+x^4),{x,0,30}],x] (* Vincenzo Librandi, Apr 06 2012 *)
    LinearRecurrence[{5,-6,4,-1},{1,4,14,50},30] (* Harvey P. Dale, Oct 18 2015 *)
  • Maxima
    a(n):=sum((binomial(n+3*m+1,n-m-1)),m,0,n-1); /* Vladimir Kruchinin, Nov 18 2020 */
  • PARI
    Vec((1-x)/(1-5*x+6*x^2-4*x^3+x^4)+O(x^99)) \\ Charles R Greathouse IV, Apr 06 2012
    

Formula

a(n) = 5*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) = a(n-1)+A055989(n) = A055991(n)-A055991(n-1) = A055988(n+1)-2*A055988(n)+A055988(n-1).
G.f.: x*(1-x)/(1-5*x+6*x^2-4*x^3+x^4). [Colin Barker, Apr 05 2012]
a(n) = Sum_{m=0..n-1} C(n+3m+1,n-m-1). - Vladimir Kruchinin, Nov 18 2020

Extensions

More terms from James Sellers, Jun 05 2000

A365150 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x))^3.

Original entry on oeis.org

1, 1, 5, 26, 150, 925, 5967, 39772, 271758, 1893431, 13400897, 96078789, 696333585, 5093266409, 37549674939, 278739057687, 2081637677823, 15628794649931, 117897848681271, 893167062280029, 6792410218680749, 51835002735642287, 396821349652564273
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x/(1 - x)^3) ). - Seiichi Manyama, Sep 24 2024

A099239 Square array read by antidiagonals associated with sections of 1/(1-x-x^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 21, 13, 5, 1, 1, 32, 55, 41, 19, 6, 1, 1, 64, 144, 129, 69, 26, 7, 1, 1, 128, 377, 406, 250, 106, 34, 8, 1, 1, 256, 987, 1278, 907, 431, 153, 43, 9, 1, 1, 512, 2584, 4023, 3292, 1757, 686, 211, 53, 10, 1, 1, 1024, 6765, 12664, 11949, 7168, 3088, 1030, 281, 64, 11, 1
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Rows include A099242, A099253. Columns include A034856. Main diagonal is A099240. Sums of antidiagonals are A099241.

Examples

			Rows begin
  1, 1,  1,   1,   1, ...                               A000012;
  1, 2,  4,   8,  16, ...      1-section of 1/(1-x-x)   A000079;
  1, 3,  8,  21,  55, ....     bisection of 1/(1-x-x^2) A001906;
  1, 4, 13,  41, 129, ...     trisection of 1/(1-x-x^3) A052529; (essentially)
  1, 5, 19,  69, 250, ...  quadrisection of 1/(1-x-x^4) A055991;
  1, 6, 26, 106, 431, ...  quintisection of 1/(1-x-x^5) A079675; (essentially)
		

Crossrefs

Programs

  • Magma
    A099239:= func< n,k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >;
    [A099239(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    T[n_, k_]:= Sum[Binomial[k*(n-k) - (k-1)*(j-1), j], {j,0,n-k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    def A099239(n,k): return sum( binomial(k*(n-k) -(k-1)*(j-1), j) for j in (0..n-k) )
    flatten([[A099239(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

T(n, k) = Sum_{j=0..n} binomial(k*n -(k-1)*(j-1), j), n, k>=0. (square array)
T(n, k) = Sum_{j=0..n} binomial(k + (n-1)*(j+1), n*(j+1) -1), n>0. (square array)
T(n, k) = Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j). (number triangle)
Rows of the square array are generated by 1/((1-x)^k-x).
Rows satisfy a(n) = a(n-1) - Sum_{k=1..n} (-1)^(k^binomial(n, k)) * a(n-k).

A055989 a(n) is its own 4th difference.

Original entry on oeis.org

1, 3, 10, 36, 131, 476, 1728, 6272, 22765, 82629, 299915, 1088589, 3951206, 14341527, 52054840, 188941273, 685792227, 2489191330, 9034913540, 32793647355, 119029728628, 432037221840, 1568147413312, 5691839002677, 20659429692245, 74986666876571, 272175964826781
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

Comments

Number of compositions of 4*n-3 into parts 1 and 4. - Seiichi Manyama, Feb 03 2024

Crossrefs

Cf. A055988, A055990, A055991 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.
Cf. A003269.

Programs

  • Magma
    I:=[1, 3, 10, 36]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
  • Mathematica
    CoefficientList[Series[(1-x)^2/(1-5*x+6*x^2-4*x^3+x^4),{x,0,40}],x] (* Vincenzo Librandi, Apr 05 2012 *)
    LinearRecurrence[{5,-6,4,-1},{1,3,10,36},30] (* Harvey P. Dale, Jan 10 2014 *)

Formula

a(n) = 5*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) = a(n-1) + A055988(n) = A055990(n) - A055990(n-1) = A055991(n) - 2*A055991(n-1) + A055991(n-2).
G.f.: x*(1-x)^2/(1 - 5*x + 6*x^2 - 4*x^3 + x^4). - Colin Barker Apr 04 2012

Extensions

More terms from James Sellers, Jun 05 2000

A192808 Constant term in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2. See Comments.

Original entry on oeis.org

1, 2, 6, 26, 126, 618, 3022, 14746, 71902, 350538, 1708910, 8331130, 40615294, 198004778, 965298958, 4705957722, 22942154782, 111845982474, 545263681710, 2658231220538, 12959222223038, 63177890368490, 308000415667278, 1501542003033370
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.
If the reduction (x^2 + c)^n by x^3 -> x^2 + c is applied to the polynomials (x^2+c)^n for c=1 instead of c=2, the results are as follows:
A052554: constant terms,
A052529: coefficients of x,
A124820: coefficients of x^2.
Those three sequences satisfy the recurrence:
u(n) = 4*u(n-1) - 3*u(n-2) + u(n-3).

Crossrefs

Programs

  • GAP
    a:=[1,2,6];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019
    
  • Mathematica
    q = x^3; s = x^2 + 2; z = 40;
    p[n_, x_] := (x^2 + 2)^n;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192808 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192809 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192810 *)
    uu = u2/2  (* A192811 *)
    LinearRecurrence[{7,-12,8}, {1,2,6}, 50] (* G. C. Greubel, Jan 02 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3)) \\ G. C. Greubel, Jan 02 2019
    
  • Sage
    ((1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
    

Formula

a(n) = 7*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: (1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3). - Colin Barker, Jul 26 2012

A308946 Expansion of e.g.f. 1/(1 - x*(1 + x/2)*exp(x)).

Original entry on oeis.org

1, 1, 5, 30, 244, 2485, 30351, 432502, 7043660, 129050649, 2627117875, 58829021416, 1437117395946, 38032508860177, 1083932872119839, 33098858988564090, 1078083456543449416, 37309607437056658129, 1367138649165397662627, 52879280631976735387588
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 02 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x (1 + x/2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k + 1, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} (k*(k + 1)/2)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A000217(k) * a(n-k).
a(n) ~ n! * (2 + r) / ((2 + 4*r + r^2) * r^n), where r = 0.49122518354447387971550543450091640839121607... is the root of the equation exp(r)*r*(2 + r) = 2. - Vaclav Kotesovec, Aug 09 2021

A382615 Expansion of 1/(1 - x/(1 - x)^3)^3.

Original entry on oeis.org

1, 3, 15, 64, 261, 1032, 3982, 15066, 56094, 206068, 748452, 2691966, 9600233, 33982197, 119495229, 417724302, 1452550371, 5026878774, 17321417650, 59450099958, 203306331429, 692955932103, 2354664287943, 7978488379398, 26963061909228, 90897971951727
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x/(1 - x)^3)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq;// Vincenzo Librandi, Apr 02 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[n+2*k-1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Apr 02 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(n+2*k-1, n-k));
    

Formula

a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(n+2*k-1,n-k).
a(n) = 12*a(n-1) - 57*a(n-2) + 139*a(n-3) - 195*a(n-4) + 174*a(n-5) - 102*a(n-6) + 39*a(n-7) - 9*a(n-8) + a(n-9) for n > 9.

A382616 Expansion of 1/(1 - x/(1 - x)^3)^2.

Original entry on oeis.org

1, 2, 9, 34, 124, 444, 1567, 5466, 18885, 64732, 220403, 746166, 2513678, 8431650, 28175256, 93834240, 311565255, 1031723268, 3408137644, 11233323692, 36950587185, 121319416734, 397649266199, 1301332828086, 4252515425757, 13877722224278, 45232020345642
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x/(1 - x)^3)^2; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 02 2025
  • Mathematica
    Table[Sum[(k+1)*Binomial[n+2*k-1,n-k],{k,0,n}],{n,0,26}] (* Vincenzo Librandi, Apr 02 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*binomial(n+2*k-1, n-k));
    

Formula

a(n) = Sum_{k=0..n} (k+1) * binomial(n+2*k-1,n-k).
a(n) = 8*a(n-1) - 22*a(n-2) + 26*a(n-3) - 17*a(n-4) + 6*a(n-5) - a(n-6) for n > 6.
G.f.: (x-1)^6/(x^3-3*x^2+4*x-1)^2.

A378566 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * binomial(n+2*k-1,n-k).

Original entry on oeis.org

1, 1, 9, 64, 465, 3456, 26082, 199060, 1532313, 11875015, 92528414, 724187982, 5689127886, 44834549501, 354289977750, 2806262293824, 22273793685609, 177113634045858, 1410633764438967, 11251419724586850, 89860413370562730, 718528004169570925
Offset: 0

Views

Author

Seiichi Manyama, Dec 01 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(n+2*k-1, n-k));

Formula

a(n) = [x^n] 1/(1 - x/(1 - x)^3)^n.
Previous Showing 11-20 of 25 results. Next