A187066
Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n=2*r+p_i, and define a(-2)=0. Then, a(n)=a(2*r+p_i) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt(2*cos(Pi/7)).
Original entry on oeis.org
1, 0, 0, 1, 2, 1, 1, 3, 5, 4, 5, 9, 14, 14, 19, 28, 42, 47, 66, 89, 131, 155, 221, 286, 417, 507, 728, 924, 1341, 1652, 2380, 2993, 4334, 5373, 7753, 9707, 14041, 17460, 25213, 31501, 45542, 56714, 81927, 102256, 147798, 184183
Offset: 0
Suppose r=3. Then
B_r = B_3 = {a(2*r-2),a(2*r),a(2*r+1)}={a(4),a(6),a(7)} = {2,1,3},
corresponding to the entries in the third column of
M = (U_2)^3 = (0 2 1)
(2 1 3)
(1 3 3).
Choose i=2 and set n=2*r+p_i. Then a(n) = a(2*r+p_i) = a(6+0) = a(6) = 1, which equals the entry in row 2 and column 2 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,2) = 1 H_(7,2,0) tiles.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,0,-1).
-
LinearRecurrence[{0,1,0,2,0,-1},{1,0,0,1,2,1},50] (* Harvey P. Dale, Aug 16 2012 *)
CoefficientList[Series[(1 - x^2 + x^3)/(1 - x^2 - 2*x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
-
my(x='x+O('x^50)); Vec((1-x^2+x^3)/(1-x^2-2*x^4+x^6)) \\ G. C. Greubel, Oct 20 2017
A096975
Trace sequence of a path graph plus loop.
Original entry on oeis.org
3, 1, 5, 4, 13, 16, 38, 57, 117, 193, 370, 639, 1186, 2094, 3827, 6829, 12389, 22220, 40169, 72220, 130338, 234609, 423065, 761945, 1373466, 2474291, 4459278, 8034394, 14478659, 26088169, 47011093, 84708772, 152642789, 275049240
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..3910
- A. Akbary, Q. Wang, A generalized Lucas sequence and permutations binomials, Proc. Am. Math. Soc. 134 (2006) 15-22, sequence a(n) with l=7.
- Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- L. E. Jeffery, Unit-primitive matrix
- Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
- Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141, Table 1 (k=3).
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1).
-
CoefficientList[Series[(3 - 2 x - 2 x^2)/(1 - x - 2 x^2 + x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 21 2019 *)
-
{a(n)=if(n>=0, n+=1; polsym(x^3-x^2-2*x+1,n-1)[n], n=1-n; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
-
a(n)=trace([0,1,0;1,0,1;0,1,1]^n); /* Joerg Arndt, Apr 30 2011 */
Original entry on oeis.org
0, 1, 3, 9, 26, 74, 209, 588, 1651, 4631, 12983, 36388, 101972, 285741, 800660, 2243445, 6286059, 17613241, 49351342, 138279586, 387451077, 1085614208, 3041824015, 8523002359, 23880923183, 66912861640, 187485674652, 525323190505, 1471922876424, 4124236259529
Offset: 1
a(5) = 26 = 1*0 + 1*4 + 4*1 + 4*3 + 6*1 = 4 + 4 + 12 + 6 = 26.
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Andrew B. Hudson, Illustration of the first 7 terms as a spiral tiling of similar trapezoids.
- Peter Steinbach, Golden Fields: A Case for the Heptagon, Mathematics Magazine, Vol. 70, No. 1, Feb. 1997.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-1)
-
I:=[0,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 11 2019
-
LinearRecurrence[{4, -3, -1}, {0, 1, 3}, 40] (* Vincenzo Librandi, Jul 11 2019 *)
-
concat(0, Vec(x^2*(1-x)/(1-4*x+3*x^2+x^3) + O(x^50))) \\ Michel Marcus, Sep 13 2014
A106803
Expansion of x*(1-x)/(1-2*x-x^2+x^3).
Original entry on oeis.org
0, 1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..2845
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31.
- Kai Wang, Fibonacci Numbers And Trigonometric Functions Outline, (2019).
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
-
m = {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0] = {0, 1, 1}; v[n_] := m.v[n - 1]; Table[v[n][[1]], {n, 0, 30}] (* Edited and corrected by L. Edson Jeffery, Oct 18 2017 *)
RecurrenceTable[{a[1]== 0, a[2]== 1, a[3]== 1, a[n]== 2*a[n-1] + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 14 2015 *)
-
concat(0,Vec((1-x)/(x^3-2*x-x^2+1)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012
A181879
Expansion of x*(1+x)/(1-3*x-4*x^2-x^3).
Original entry on oeis.org
0, 1, 4, 16, 65, 263, 1065, 4312, 17459, 70690, 286218, 1158873, 4692181, 18998253, 76922356, 311452261, 1261044460, 5105864780, 20673224441, 83704176903, 338911293253, 1372223811812, 5556020785351, 22495868896554, 91083913642878, 368791237300201, 1493205235368669, 6045864568949689, 24479205885623944, 99114281168039257, 401305531615563236
Offset: 0
-
CoefficientList[Series[x (1+x)/(1-3x-4x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,4,1},{0,1,4},40] (* Harvey P. Dale, Feb 04 2024 *)
-
Vec((1+x)/(1-3*x-4*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
A181880
Expansion of 1/(1-4*x-3*x^2-x^3).
Original entry on oeis.org
1, 4, 19, 89, 417, 1954, 9156, 42903, 201034, 942001, 4414009, 20683073, 96916320, 454128508, 2127946065, 9971086104, 46722311119, 218930448853, 1025859814873, 4806952917170, 22524321562152, 105544004814991, 494555936863590, 2317380083461485, 10858732149251701, 50881624784254849, 238420075668235984, 1117183909174960184, 5234877488488803537, 24529481757148330684
Offset: 0
-
CoefficientList[Series[1/(1-4*x-3*x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,3,1},{1,4,19},40] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
A188316
Riordan array (1/(1-x^2), x/((1-x)*(1-x^2))).
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 0, 3, 2, 1, 1, 3, 6, 3, 1, 0, 6, 10, 10, 4, 1, 1, 6, 20, 22, 15, 5, 1, 0, 10, 30, 49, 40, 21, 6, 1, 1, 10, 50, 91, 100, 65, 28, 7, 1, 0, 15, 70, 168, 216, 181, 98, 36, 8, 1, 1, 15, 105, 280, 444, 441, 301, 140, 45, 9, 1
Offset: 0
Triangle begins
1,
0, 1,
1, 1, 1,
0, 3, 2, 1,
1, 3, 6, 3, 1,
0, 6, 10, 10, 4, 1,
1, 6, 20, 22, 15, 5, 1,
0, 10, 30, 49, 40, 21, 6, 1,
1, 10, 50, 91, 100, 65, 28, 7, 1,
0, 15, 70, 168, 216, 181, 98, 36, 8, 1
A216054
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
- E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89
-
Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
A052672
Expansion of e.g.f. (1-x)/(1-x-2*x^2+x^3).
Original entry on oeis.org
1, 0, 4, 6, 120, 600, 10080, 95760, 1693440, 23950080, 475372800, 8821612800, 199743667200, 4533271142400, 116906088499200, 3112264995840000, 90679371374592000, 2757644630028288000, 89895729202126848000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
I:=[1,0,4]; [n le 3 select I[n] else (n-1)*(Self(n-1) +2*(n-2)*Self(n-2) -(n-2)*(n-3)*Self(n-3)): n in [1..31]]; // G. C. Greubel, Jun 13 2022
-
spec := [S,{S=Sequence(Prod(Z,Union(Z,Prod(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[-(-1+x)/(x^3-2x^2-x+1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 25 2021 *)
-
def A052672_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( (1-x)/(1-x-2*x^2+x^3) ).egf_to_ogf().list()
A052672_list(30) # G. C. Greubel, Jun 13 2022
A265755
a(n) = a(n-1) + a(n-2) if n is even and a(n) = a(n-3) + a(n-4) if n is odd, with a(0) = a(1) = a(2) = 0 and a(3) = 1.
Original entry on oeis.org
0, 0, 0, 1, 1, 0, 1, 2, 3, 1, 4, 5, 9, 5, 14, 14, 28, 19, 47, 42, 89, 66, 155, 131, 286, 221, 507, 417, 924, 728, 1652, 1341, 2993, 2380, 5373, 4334, 9707, 7753, 17460, 14041, 31501, 25213, 56714, 45542, 102256, 81927, 184183, 147798, 331981, 266110, 598091, 479779, 1077870, 864201, 1942071, 1557649
Offset: 0
a(8) = a(7) + a(6)
= a(4) + a(3) + a(5) + a(4)
= (a(3) + a(2)) + a(3) + (a(2) + a(1)) + (a(3) + a(2))
= 1 + 1 + 0 + 1
= 3
A187066 with even values and odd values swapped and an extra leading 0.
-
a[0] = a[1] = a[2] = 0; a[3] = 1; a[n_] := a[n] = If[EvenQ@ n, a[n - 1] + a[n - 2], a[n - 3] + a[n - 4]]; Table[a@ n, {n, 0, 55}] (* Michael De Vlieger, Dec 15 2015 *)
nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,If[OddQ[n],c+d,a+b]}; NestList[nxt,{1,0,0,0,1},60][[All,2]] (* or *) LinearRecurrence[{0,1,0,2,0,-1},{0,0,0,1,1,0},60] (* Harvey P. Dale, Nov 10 2017 *)
-
concat(vector(3), Vec(x^3*(1+x-x^2)/(1-x^2-2*x^4+x^6) + O(x^70))) \\ Colin Barker, Dec 16 2015
Comments