cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A187066 Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n=2*r+p_i, and define a(-2)=0. Then, a(n)=a(2*r+p_i) gives the quantity of H_(7,2,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt(2*cos(Pi/7)).

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 1, 3, 5, 4, 5, 9, 14, 14, 19, 28, 42, 47, 66, 89, 131, 155, 221, 286, 417, 507, 728, 924, 1341, 1652, 2380, 2993, 4334, 5373, 7753, 9707, 14041, 17460, 25213, 31501, 45542, 56714, 81927, 102256, 147798, 184183
Offset: 0

Views

Author

L. Edson Jeffery, Mar 09 2011

Keywords

Comments

(Start) See A187067 for supporting theory. Define the matrix
U_1= (0 1 0)
(1 0 1)
(0 1 1).
Let r>=0 and M=(m_(i,j))=(U_1)^r, i,j=1,2,3. Let B_r be the r-th "block" defined by B_r={a(2*r-2),a(2*r),a(2*r+1)} with a(-2)=0. Note that B_r-B_(r-1)-2*B_(r-2)+B_(r-3)={0,0,0}, with B_0={a(-2),a(0),a(1)}={0,1,0}. Let p={p_1,p_2,p_3}=(-2,0,1) and n=2*r+p_i. Then a(n)=a(2*r+p_i)=m_(i,2), where M=(m_(i,j))=(U_1)^r was defined above. Hence the block B_r corresponds component-wise to the second column of M, and a(n)=m_(i,2) gives the quantity of H_(7,2,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Combining blocks A_r, B_r and C_r, from A187065, this sequence and A187067, respectively, as matrix columns [A_r,B_r,C_r] generates the matrix (U_1)^r, and a negative index (-1)*r yields the corresponding inverse [A_(-r),B_(-r),C_(-r)]=(U_1)^(-r) of (U_1)^r. Therefore, the three sequences need not be causal.
Since a(2*r-2)=a(2*(r-1)) for all r, this sequence arises by concatenation of second-column entries m_(2,2) and m_(3,2) from successive matrices M=(U_1)^r.

Examples

			Suppose r=3. Then
B_r = B_3 = {a(2*r-2),a(2*r),a(2*r+1)}={a(4),a(6),a(7)} = {2,1,3},
corresponding to the entries in the third column of
M = (U_2)^3 = (0 2 1)
              (2 1 3)
              (1 3 3).
Choose i=2 and set n=2*r+p_i. Then a(n) = a(2*r+p_i) = a(6+0) = a(6) = 1, which equals the entry in row 2 and column 2 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,2) = 1 H_(7,2,0) tiles.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,2,0,-1},{1,0,0,1,2,1},50] (* Harvey P. Dale, Aug 16 2012 *)
    CoefficientList[Series[(1 - x^2 + x^3)/(1 - x^2 - 2*x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Oct 20 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x^2+x^3)/(1-x^2-2*x^4+x^6)) \\ G. C. Greubel, Oct 20 2017

Formula

Recurrence: a(n) = a(n-2)+2*a(n-4)-a(n-6).
a(2*n) = A052547(n), a(2n+1) = A006053(n+1).
G.f.: (1-x^2+x^3)/(1-x^2-2*x^4+x^6).
Closed-form: a(n) = -(1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[2*(-1)^(k-1)*cos(k*Pi/7)], X_k = (w_k)^5-(w_k)^3+(w_k)^2 and Y_k = -(w_k)^5+(w_k)^3+(w_k)^2, k=1,2,3.

A096975 Trace sequence of a path graph plus loop.

Original entry on oeis.org

3, 1, 5, 4, 13, 16, 38, 57, 117, 193, 370, 639, 1186, 2094, 3827, 6829, 12389, 22220, 40169, 72220, 130338, 234609, 423065, 761945, 1373466, 2474291, 4459278, 8034394, 14478659, 26088169, 47011093, 84708772, 152642789, 275049240
Offset: 0

Views

Author

Paul Barry, Jul 16 2004

Keywords

Comments

Let A be the adjacency matrix of the graph P_3 with a loop added at the end. Then a(n) = trace(A^n). A is a 'reverse Jordan matrix' [0,0,1;0,1,1;1,1,0]. a(n) = abs(A094648(n)).
From L. Edson Jeffery, Mar 22 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A = A_(7,1) =
(0 1 0)
(1 0 1)
(0 1 1).
Then a(n) = Trace(A^n). (End)

Crossrefs

A033304(n) = a(-1-n). - Michael Somos, Aug 03 2006

Programs

  • Mathematica
    CoefficientList[Series[(3 - 2 x - 2 x^2)/(1 - x - 2 x^2 + x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 21 2019 *)
  • PARI
    {a(n)=if(n>=0, n+=1; polsym(x^3-x^2-2*x+1,n-1)[n], n=1-n; polsym(1-x-2*x^2+x^3,n-1)[n])} /* Michael Somos, Aug 03 2006 */
    
  • PARI
    a(n)=trace([0,1,0;1,0,1;0,1,1]^n); /* Joerg Arndt, Apr 30 2011 */

Formula

G.f.: (3-2*x-2*x^2)/(1-x-2*x^2+x^3);
a(n) = a(n-1) + 2*a(n-2) - a(n-3);
a(n) = (2*sqrt(7)*sin(atan(sqrt(3)/9)/3)/3+1/3)^n + (1/3-2*sqrt(7)*sin(atan(sqrt(3)/9)/3+Pi/3)/3)^n + (2*sqrt(7)*cos(acot(-sqrt(3)/9)/3)/3+1/3)^n.
a(n) = 2^n*((cos(Pi/7))^n+(cos(3*Pi/7))^n+(cos(5*Pi/7))^n). - Vladimir Shevelev, Aug 25 2010
a(n) = (-1)^n*A094648(n). - R. J. Mathar, Nov 05 2024

A116423 Binomial transform of A006053.

Original entry on oeis.org

0, 1, 3, 9, 26, 74, 209, 588, 1651, 4631, 12983, 36388, 101972, 285741, 800660, 2243445, 6286059, 17613241, 49351342, 138279586, 387451077, 1085614208, 3041824015, 8523002359, 23880923183, 66912861640, 187485674652, 525323190505, 1471922876424, 4124236259529
Offset: 1

Views

Author

Gary W. Adamson, Feb 14 2006

Keywords

Comments

a(n)/a(n-1) tends to 2.801... = 1 + 2*cos(Pi/7).
A(n) := a(n+1)*(-1)^(n+1) appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma, n >= 0, with C(n)= A085810(n)*(-1)^n, and B(n)= A181880(n-2)*(-1)^n. For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.
This sequence is constructible as a spiral tiling of similar trapezoids, as follows: start with an isosceles trapezoid with side lengths 3,1,4,1. Each new trapezoid is rotated and scaled so one leg fills all unoccupied space on the short base of the previous trapezoid. a(n) is given by the length of the n-th trapezoid's legs. This process is identical to the recursion relation added by R. J. Mathar in the Formula section. See the Links section for an illustration. - Andrew B. Hudson, Jun 19 2019

Examples

			a(5) = 26 = 1*0 + 1*4 + 4*1 + 4*3 + 6*1 = 4 + 4 + 12 + 6 = 26.
		

Crossrefs

Cf. A006053.

Programs

  • Magma
    I:=[0,1,3]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 11 2019
  • Mathematica
    LinearRecurrence[{4, -3, -1}, {0, 1, 3}, 40] (* Vincenzo Librandi, Jul 11 2019 *)
  • PARI
    concat(0, Vec(x^2*(1-x)/(1-4*x+3*x^2+x^3) + O(x^50))) \\ Michel Marcus, Sep 13 2014
    

Formula

Binomial transform of A006053 starting with A006053(1): (0, 1, 1, 3, 4, 9, 14, ...).
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: x^2(1-x)/(1 - 4x + 3x^2 + x^3).
a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3). (End)

Extensions

More terms from R. J. Mathar, Apr 02 2008
More terms from Michel Marcus, Sep 13 2014

A106803 Expansion of x*(1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

Essentially a duplicate of A077998: a(n) = A077998(n-1). - Joerg Arndt, Aug 14 2015
a(n) appears in the formula for the nonnegative powers of sigma, the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with rho = 2*cos(Pi/7), the ratio of the smaller heptagon diagonal to the side length, as follows. sigma^n = a(n-1)*1 + B(n)*rho + a(n)*sigma, n>=0, with B(n)=A006054(n). Put a(-1):= 1. See the Steinbach reference, and a comment under A052547.
a(n-1) is the top left entry of the n-th power of the 3X3 matrix [0, 1, 0; 1, 1, 1; 0, 1, 1] or of the 3X3 matrix [0, 0, 1; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    m = {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0] = {0, 1, 1}; v[n_] := m.v[n - 1]; Table[v[n][[1]], {n, 0, 30}] (* Edited and corrected by L. Edson Jeffery, Oct 18 2017 *)
    RecurrenceTable[{a[1]== 0, a[2]== 1, a[3]== 1, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 14 2015 *)
  • PARI
    concat(0,Vec((1-x)/(x^3-2*x-x^2+1)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = A077998(n-1). - R. J. Mathar, Aug 07 2008
a(n) = A187070(2*n), a(n) = A187068(2*n+2). - L. Edson Jeffery, Mar 10 2011
a(n+1) = - A199853(n+1). - G. C. Greubel, Aug 14 2015
a(n) = 2*a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=a(2)=1. - G. C. Greubel, Aug 14 2015
a(n) = A006356(n-2) for n > 1. - Georg Fischer, Oct 21 2018

Extensions

Edited by N. J. A. Sloane, Aug 08 2008

A181879 Expansion of x*(1+x)/(1-3*x-4*x^2-x^3).

Original entry on oeis.org

0, 1, 4, 16, 65, 263, 1065, 4312, 17459, 70690, 286218, 1158873, 4692181, 18998253, 76922356, 311452261, 1261044460, 5105864780, 20673224441, 83704176903, 338911293253, 1372223811812, 5556020785351, 22495868896554, 91083913642878, 368791237300201, 1493205235368669, 6045864568949689, 24479205885623944, 99114281168039257, 401305531615563236
Offset: 0

Views

Author

Wolfdieter Lang, Nov 26 2010

Keywords

Comments

a(n) appears in the following formula for the nonnegative powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7)= rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field, called there Q(rho). (rho*sigma)^n = C(n) + B(n)*rho + a(n)*sigma,n>=0, with C(n)= A120757(n) with C(0):=1, and B(n)= |A122600(n-1)| with B(0)=1. For the nonpositive powers see A085810(n)*(-1)^n, A181880(n-2)*(-1)^n and A116423(n+1)*(-1)^(n+1), respectively. See also a comment under A052547.

Programs

  • Mathematica
    CoefficientList[Series[x (1+x)/(1-3x-4x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,4,1},{0,1,4},40] (* Harvey P. Dale, Feb 04 2024 *)
  • PARI
    Vec((1+x)/(1-3*x-4*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012

Formula

a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3), n>=2, a(-1):=1, a(0)=0, a(1)=1.

A181880 Expansion of 1/(1-4*x-3*x^2-x^3).

Original entry on oeis.org

1, 4, 19, 89, 417, 1954, 9156, 42903, 201034, 942001, 4414009, 20683073, 96916320, 454128508, 2127946065, 9971086104, 46722311119, 218930448853, 1025859814873, 4806952917170, 22524321562152, 105544004814991, 494555936863590, 2317380083461485, 10858732149251701, 50881624784254849, 238420075668235984, 1117183909174960184, 5234877488488803537, 24529481757148330684
Offset: 0

Views

Author

Wolfdieter Lang, Nov 27 2010

Keywords

Comments

B(n):=a(n-2)*(-1)^n, B(0):=0, B(1):=0, (o.g.f. x^2/(1 + 4*x + 3*x^2 -x^3))appears in the following formula for the nonpositive powers of rho*sigma, where rho:=2*cos(Pi/7) and sigma:=sin(3*Pi/7)/sin(Pi/7) = rho^2-1 are the ratios of the smaller and larger diagonal length to the side length in a regular 7-gon (heptagon). See the Steinbach reference where the basis <1,rho,sigma> is used in an extension of the rational field. (rho*sigma)^(-n) = C(n) + B(n)*rho + A(n)*sigma,n>=0, with C(n)= A085810(n)*(-1)^n, and A(n)= A116423(n+1)*(-1)^(n+1). For the nonnegative powers see A120757(n), |A122600(n-1)| and A181879(n), respectively. See also a comment under A052547.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-4*x-3*x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,3,1},{1,4,19},40] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)

Formula

O.g.f.: 1/(1-4*x-3*x^2-x^3).
a(n) = 4*a(n) + 3*a(n-2) +a(n-3), n>=2, a(-1):=0, a(0)=1, a(1)=4.

A188316 Riordan array (1/(1-x^2), x/((1-x)*(1-x^2))).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 3, 2, 1, 1, 3, 6, 3, 1, 0, 6, 10, 10, 4, 1, 1, 6, 20, 22, 15, 5, 1, 0, 10, 30, 49, 40, 21, 6, 1, 1, 10, 50, 91, 100, 65, 28, 7, 1, 0, 15, 70, 168, 216, 181, 98, 36, 8, 1, 1, 15, 105, 280, 444, 441, 301, 140, 45, 9, 1
Offset: 0

Views

Author

Paul Barry, Mar 28 2011

Keywords

Comments

Row sums are A077998.
Diagonal sums are A052547.
Inverse is A188317.

Examples

			Triangle begins
1,
0, 1,
1, 1, 1,
0, 3, 2, 1,
1, 3, 6, 3, 1,
0, 6, 10, 10, 4, 1,
1, 6, 20, 22, 15, 5, 1,
0, 10, 30, 49, 40, 21, 6, 1,
1, 10, 50, 91, 100, 65, 28, 7, 1,
0, 15, 70, 168, 216, 181, 98, 36, 8, 1
		

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-3,k), T(0,0) = T(1,1) = T(2,0) = T(2,1) = T(2,2)=1, T(1,0)=0, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 16 2014

A216054 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
		

References

  • E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89

Crossrefs

Cf. Similar sequences A216230, A216228, A216226, A216238

Programs

  • Mathematica
    Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)

Formula

T(n,n) = A080937(n).
T(n,n+1) = A080937(n+1).
T(n,n+2) = A094790(n+1).
T(n,n+3) = A094789(n+1).
T(n,n4) = T(n,n+5) = A005021(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A028495(n).

A052672 Expansion of e.g.f. (1-x)/(1-x-2*x^2+x^3).

Original entry on oeis.org

1, 0, 4, 6, 120, 600, 10080, 95760, 1693440, 23950080, 475372800, 8821612800, 199743667200, 4533271142400, 116906088499200, 3112264995840000, 90679371374592000, 2757644630028288000, 89895729202126848000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,0,4]; [n le 3 select I[n] else (n-1)*(Self(n-1) +2*(n-2)*Self(n-2) -(n-2)*(n-3)*Self(n-3)): n in [1..31]]; // G. C. Greubel, Jun 13 2022
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Prod(Z,Sequence(Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[-(-1+x)/(x^3-2x^2-x+1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 25 2021 *)
  • SageMath
    def A052672_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-x)/(1-x-2*x^2+x^3) ).egf_to_ogf().list()
    A052672_list(30) # G. C. Greubel, Jun 13 2022

Formula

E.g.f.: (1 - x)/(1 - x - 2*x^2 + x^3).
Recurrence: a(0)=1, a(1)=0, a(2)=4, a(n) = n*a(n-1) + 2*n*(n-1)*a(n-2) - n*(n-1)*(n-2)*a(n-3).
a(n) = (n!/7)*Sum_{alpha=RootOf(Z^3 -2*Z^2 -Z +1)} (3 - alpha)*alpha^(-n).
a(n) = n!*A052547(n). - R. J. Mathar, Nov 27 2011

A265755 a(n) = a(n-1) + a(n-2) if n is even and a(n) = a(n-3) + a(n-4) if n is odd, with a(0) = a(1) = a(2) = 0 and a(3) = 1.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 2, 3, 1, 4, 5, 9, 5, 14, 14, 28, 19, 47, 42, 89, 66, 155, 131, 286, 221, 507, 417, 924, 728, 1652, 1341, 2993, 2380, 5373, 4334, 9707, 7753, 17460, 14041, 31501, 25213, 56714, 45542, 102256, 81927, 184183, 147798, 331981, 266110, 598091, 479779, 1077870, 864201, 1942071, 1557649
Offset: 0

Views

Author

Nicholas Drozd, Dec 15 2015

Keywords

Examples

			a(8) = a(7) + a(6)
     = a(4) + a(3) + a(5) + a(4)
     = (a(3) + a(2)) + a(3) + (a(2) + a(1)) + (a(3) + a(2))
     = 1 + 1 + 0 + 1
     = 3
		

Crossrefs

Interleaves A006053 and A052547, with an extra leading 0.
A187066 with even values and odd values swapped and an extra leading 0.

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 0; a[3] = 1; a[n_] := a[n] = If[EvenQ@ n, a[n - 1] + a[n - 2], a[n - 3] + a[n - 4]]; Table[a@ n, {n, 0, 55}] (* Michael De Vlieger, Dec 15 2015 *)
    nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,If[OddQ[n],c+d,a+b]}; NestList[nxt,{1,0,0,0,1},60][[All,2]] (* or *) LinearRecurrence[{0,1,0,2,0,-1},{0,0,0,1,1,0},60] (* Harvey P. Dale, Nov 10 2017 *)
  • PARI
    concat(vector(3), Vec(x^3*(1+x-x^2)/(1-x^2-2*x^4+x^6) + O(x^70))) \\ Colin Barker, Dec 16 2015

Formula

From Colin Barker, Dec 16 2015: (Start)
a(n) = a(n-2) + 2*a(n-4) - a(n-6) for n>5.
G.f.: x^3*(1+x-x^2) / (1-x^2-2*x^4+x^6).
(End)

Extensions

More terms from Michael De Vlieger, Dec 15 2015
Previous Showing 11-20 of 20 results.