cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A240688 Expansion of -(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1).

Original entry on oeis.org

1, 1, 5, 19, 81, 351, 1553, 6959, 31489, 143551, 658305, 3033471, 14034177, 65147135, 303285505, 1415422719, 6620053505, 31021657087, 145613977601, 684537354239, 3222408929281, 15187861143551, 71663163121665
Offset: 0

Views

Author

Vladimir Kruchinin, Apr 10 2014

Keywords

Crossrefs

Cf. A052709.

Programs

  • Mathematica
    CoefficientList[Series[-(x Sqrt[-4 x^2 - 4 x + 1] - 2 x^2 - 3 x) / ((x + 1) Sqrt[-4 x^2 - 4 x + 1] + 4 x^3 + 8 x^2 + 3 x - 1), {x, 0, 25}], x] (* Vaclav Kotesovec, Apr 12 2014 *)
  • Maxima
    a(n):=sum((sum(binomial(k,n-k-i)*binomial(k+i-1,i),i,0,n-k))*binomial(n,k),k,0,n);
    
  • PARI
    x='x+O('x^50); Vec(-(x*sqrt(-4*x^2-4*x+1)-2*x^2-3*x) / ((x+1)*sqrt(-4*x^2-4*x+1)+ 4*x^3+8*x^2+3*x-1)) \\ G. C. Greubel, Apr 05 2017

Formula

a(n) = Sum_{k=0..n} Sum_{i=0..(n-k)} binomial(k,n-k-i)*binomial(k+i-1,i)*binomial(n,k).
A(x) = x*D'(x)/D(x) where D(x)=(1-sqrt(1-4*x-4*x^2))/(2*(1+x)) is g.f. of A052709.
a(n) ~ 2^(n-1/4) * (1+sqrt(2))^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Apr 12 2014
a(n) = Sum_{i=0..n/2} binomial(n,i)*binomial(2*n-2*i-1,n-2*i). - Vladimir Kruchinin, Mar 10 2015
Conjecture: n*(n-1)*a(n) -(3*n-2)*(n-1)*a(n-1) +2*(-4*n^2+7*n-1)*a(n-2) -4*n*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 14 2016
From Peter Bala, Feb 13 2022: (Start)
The o.g.f. A(x) satisfies the differential equation (8*x^4 + 20*x^3 + 14*x^2 + x - 1)*A(x)' + (8*x^3 + 12*x^2 + 6*x + 3)*A(x) - 2 = 0 with A(0) = 1.
n*a(n) = (n+2)*a(n-1) + (14*n-22)*a(n-2) + (20*n-48)*a(n-3) + (8*n-24)*a(n-4).
Mathar's conjectural third-order recurrence above can be verified using Maple's gfun:-rectodiffeq command.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. (End)
From Peter Bala, Aug 30 2025: (Start)
a(n) = Sum_{0 <= i, j <= n/2} binomial(n, j)*binomial(n+i-1, i)*binomial(n, 2*i+2*j) (verified to satisfy Mathar's third-order recurrence using the MulZeil procedure in Doron Zeilberger's MultiZeilberger Maple package).
Equivalently, a(n) = [x^n] ( (1 + x + x^2 + x^3)/(1 - x^2) )^n. Hence the Gauss congruences hold as stated above. Cf. A288470.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for primes p >= 5 and positive integers n and k. (End)

A360083 a(n) = Sum_{k=0..n} binomial(5*k,n-k) * Catalan(k).

Original entry on oeis.org

1, 1, 7, 35, 189, 1092, 6538, 40278, 253730, 1626858, 10582616, 69669273, 463319257, 3107941405, 21004392887, 142882885210, 977562617826, 6722361860888, 46438235933700, 322111000796428, 2242538435656450, 15665017062799230, 109761527468995102
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[5k,n-k]CatalanNumber[k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, Jul 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(5*k, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x*(1+x)^5)))

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x * (1+x)^5 * A(x)).
G.f.: 2 / (1 + sqrt( 1 - 4*x*(1+x)^5 )).

A369262 Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^3 ).

Original entry on oeis.org

1, 1, 5, 17, 80, 363, 1792, 8969, 46319, 242994, 1296046, 6996163, 38175142, 210162728, 1166020560, 6512854409, 36593709385, 206686641555, 1172856064443, 6683348391034, 38228129813288, 219411037878578, 1263245957786120, 7293833100110787, 42224142505632305
Offset: 0

Views

Author

Seiichi Manyama, Jan 18 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(2*n-2*k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^2)^3 )^(n+1). - Seiichi Manyama, Feb 14 2024

A133656 Number of below-diagonal paths from (0,0) to (n,n) using steps (1,0), (0,1) and (2k-1,1), k a positive integer.

Original entry on oeis.org

1, 2, 6, 23, 99, 456, 2199, 10962, 56033, 292094, 1546885, 8299058, 45010492, 246377362, 1359339710, 7551689783, 42206697209, 237156951618, 1338917298708, 7591380528489, 43207023511013, 246773061257046, 1413889039642479, 8124356140582768, 46807462792903984
Offset: 0

Views

Author

Brian Drake, Sep 20 2007

Keywords

Examples

			a(4) = 99 since there are 90 Schroeder paths (A006318) from (0,0) to (4,4) plus DNNEN, DNENN, DENNN, DdNN, DNdN, DNNd, EDNNN, ENDNN and dDNN, where E=(1,0), N=(0,1), D=(3,1) and d=(1,1).
		

Crossrefs

Programs

  • Maple
    A:=series(RootOf(1+_Z*(x-1)+_Z^2*(x-x^2)+_Z^3*x^2-_Z^4*x^3), x, 21): seq(coeff(A,x,i), i=0..20);
  • Mathematica
    a[n_] := Sum[Binomial[n+k, n] * Sum[Binomial[j, -n - 3k + 2j - 2]* (-1)^(n+k-j+1) * Binomial[n+k+1, j], {j, 0, k+n+1}], {k, 0, n}]/(n+1);
    a /@ Range[0, 24] (* Jean-François Alcover, Oct 06 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(binomial(n+k,n)*sum(binomial(j,-n-3*k+2*j-2)*(-1)^(n+k-j+1) *binomial(n+k+1,j),j,0,k+n+1),k,0,n)/(n+1); /* Vladimir Kruchinin, Oct 11 2011 */

Formula

G.f. g(x) satisfies: g(x) = 1 + x*g(x)^2+x*g(x)/(1-x^2*g(x)^2).
a(n) = sum(k=0..n, binomial(n+k,n)*sum(j=0..k+n+1, binomial(j,-n-3*k+2*j-2) *(-1)^(n+k-j+1)*binomial(n+k+1,j)))/(n+1). - Vladimir Kruchinin, Oct 11 2011
From Peter Bala, Feb 22 2022: (Start)
G.f. g(x) = (1/x)*series reversion of x*(1 + x)*(1 - x)^2/(1 + x - x^2).
It appears that 1 + x*g'(x)/g(x) = 1 + 2*x + 8*x^2 + 41*x^3 + 220*x^4 + ... is the g.f. of A348474. (End)

A201076 Irregular triangle read by rows: number of {0,2}-shifted Schroeder paths of length n and area k.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 3, 6, 7, 7, 5, 0, 0, 1, 2, 3, 6, 10, 13, 16, 20, 19, 15, 8, 0, 0, 1, 2, 3, 6, 10, 16, 22, 29, 39, 48, 53, 56, 57, 46, 30, 13, 0, 0, 0, 1, 2, 3, 6, 10, 16, 25, 35, 48, 66, 85, 106, 127, 147, 167, 179, 178, 168, 146, 103, 58, 21, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 26 2011

Keywords

Examples

			Triangle begins
1
1
1 2 0
1 2 3 3 0
1 2 3 6 7 7 5 0 0
1 2 3 6 10 13 16 20 19 15 8 0 0
...
		

Crossrefs

Row sums give A052709. Rows converge to A101277.
Cf. S-shifted Schroeder paths for various S: A201075 {0,1}, A201079 {0,2,4,6...}, A201080 {0,1,3,5...}, A201159 {0,1,2}.

Programs

  • Mathematica
    gf = Expand /@ FixedPoint[1 + (q x + q^2 x^2) # (Normal@# /. {x :> q^2 x}) + O[x]^8 &, 0];
    Flatten[Reverse[CoefficientList[#, q]][[;; ;; 2]] & /@ CoefficientList[gf, x]] (* Andrey Zabolotskiy, Jan 02 2024 *)

Extensions

Row 5 corrected, rows 6-7 added by Andrey Zabolotskiy, Jan 02 2024

A260774 Certain directed lattice paths.

Original entry on oeis.org

1, 6, 33, 189, 1107, 6588, 39663, 240894, 1473147, 9058554, 55954395, 346934745, 2157989445, 13459891500, 84152389833, 527224251861, 3309194474451, 20804569738218, 130987600581699, 825796890644895, 5212349717906889, 32935490120006604, 208316726580941037
Offset: 0

Views

Author

N. J. A. Sloane, Jul 30 2015

Keywords

Comments

See Dziemianczuk (2014) for precise definition.

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`([x, y]=[0$2], 1,
          `if`(x>0, add(b(x-1, y+j), j=-1..1), 0)+
          `if`(y>0, b(x, y-1), 0)+`if`(y<0, b(x, y+1), 0))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 21 2021
  • Mathematica
    b[x_, y_] := b[x, y] = If[{x, y} == {0, 0}, 1,
         If[x > 0, Sum[b[x - 1, y + j], {j, -1, 1}], 0] +
         If[y > 0, b[x, y - 1], 0] + If[y < 0, b[x, y + 1], 0]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

See Dziemianczuk (2014) Equation (33a) with m=1.
From Vaclav Kotesovec, Jul 15 2022: (Start)
Recurrence: (n+1)*(4*n - 3)*a(n) = 6*(4*n^2 - n - 1)*a(n-1) + 3*(n-1)*(4*n + 1)*a(n-2).
a(n) ~ (3 + 2*sqrt(3))^(n+1) / sqrt(6*Pi*n). (End)

Extensions

More terms from Lars Blomberg, Aug 01 2015

A360272 a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * Catalan(n-3*k).

Original entry on oeis.org

1, 1, 2, 5, 15, 46, 147, 485, 1642, 5669, 19883, 70646, 253755, 919925, 3361546, 12368661, 45786219, 170400470, 637200555, 2392962645, 9021255722, 34128098389, 129519490219, 492966689110, 1881289209003, 7197100511317, 27595769836714, 106032318322517
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2023

Keywords

Crossrefs

Programs

  • Maple
    A360272 := proc(n)
        add(binomial(n-3*k,k)*A000108(n-3*k),k=0..n/3) ;
    end proc:
    seq(A360272(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k)/(n-3*k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+(sqrt(1-4*x*(1+x^3)))))

Formula

G.f.: c(x * (1+x^3)), where c(x) is the g.f. of A000108.
a(n) ~ 2 * sqrt(1-3*r) / (sqrt(Pi) * n^(3/2) * r^n), where r = 0.2463187933841... is the smallest positive root of the equation1 1 - 4*r - 4*r^4 = 0. - Vaclav Kotesovec, Feb 01 2023
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(n+1)*a(n-3) +2*(-4*n+11)*a(n-4) +4*(-n+5)*a(n-7)=0. - R. J. Mathar, Mar 12 2023

A376486 G.f. satisfies A(x) = 1 / (1 - x^3*A(x)^3 * (1 + x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 4, 8, 4, 22, 66, 66, 162, 560, 840, 1529, 4985, 9690, 16774, 47349, 107229, 195500, 483000, 1172724, 2311516, 5249556, 12910716, 27299992, 59765400, 144602352, 321554224, 700449496, 1654540452, 3789265198, 8344514618, 19327204006
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • Maple
    A376486 := proc(n)
        add(binomial(4*k,k)*binomial(k,n-3*k)/(3*k+1),k=0..floor(n/3)) ;
    end proc:
    seq(A376486(n),n=0..70) ;
    # R. J. Mathar, Sep 26 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(4*k, k)*binomial(k, n-3*k)/(3*k+1));

Formula

G.f.: (1/x) * Series_Reversion( x*(1-x^3)/(1+x^4) ).
a(n) = Sum_{k=0..floor(n/3)} binomial(4*k,k) * binomial(k,n-3*k) / (3*k+1).
D-finite with recurrence 243*n*(n-1)*(n+1)*a(n) +81*n*(n-1)*(14*n-31)*a(n-1) +27*(73*n-240)*(n-1)*(n-2)*a(n-2) +36*(-22*n^3-99*n^2+731*n-870)*a(n-3) +48*(-263*n^3+1908*n^2-4449*n+3290)*a(n-4) -128*(n-4)*(230*n^2-1429*n+2205)*a(n-5) -768*(n-5)*(43*n-168)*(n-4)*a(n-6) -9216*(n-5)*(n-6)*(2*n-9)*a(n-7) -4096*(n-5)*(n-6)*(n-7)*a(n-8)=0. - R. J. Mathar, Sep 26 2024

A376487 G.f. satisfies A(x) = 1 / (1 - x^4*A(x)^4 * (1 + x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 5, 10, 5, 0, 35, 105, 105, 35, 285, 1140, 1710, 1140, 2815, 12650, 25300, 25300, 36401, 145036, 356265, 475020, 588145, 1765666, 4893231, 8115800, 10446245, 23513040, 66875620, 130736800, 187081505, 346058115, 927465240
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(5*k, k)*binomial(k, n-4*k)/(4*k+1));

Formula

G.f.: (1/x) * Series_Reversion( x*(1-x^4)/(1+x^5) ).
a(n) = Sum_{k=0..floor(n/4)} binomial(5*k,k) * binomial(k,n-4*k) / (4*k+1).

A102051 Matrix inverse of triangle A101275 (number of Schröder paths).

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -9, 15, -7, 1, 31, -58, 36, -10, 1, -113, 229, -170, 66, -13, 1, 431, -924, 775, -372, 105, -16, 1, -1697, 3795, -3481, 1939, -691, 153, -19, 1, 6847, -15822, 15542, -9674, 4072, -1154, 210, -22, 1, -28161, 66801, -69276, 47012, -22446, 7606, -1788, 276, -25, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 27 2004

Keywords

Comments

Row sums are {1,0,0,0...}. Absolute row sums form A006139. Column 0 forms signed A052709. Column 1 forms A102052. Column 2 forms A102053.

Examples

			Rows begin:
[1],
[ -1,1],
[3,-4,1],
[ -9,15,-7,1],
[31,-58,36,-10,1],
[ -113,229,-170,66,-13,1],
[431,-924,775,-372,105,-16,1],
[ -1697,3795,-3481,1939,-691,153,-19,1],
[6847,-15822,15542,-9674,4072,-1154,210,-22,1],...
Matrix inverse equals triangle A101275:
[1],
[1,1],
[1,4,1],
[1,13,7,1],
[1,44,34,10,1],...
		

Crossrefs

Programs

  • Maxima
    T(n,m):=(-1)^(n-m)*(2*m+1)*(sum((binomial(k,n-k)*binomial(2*k,k-m))/(m+k+1),k,0,n)); /* Vladimir Kruchinin, Apr 18 2015 */
  • PARI
    {T(n,k)=polcoeff(polcoeff(2/(2*y+(1-y)*(1+sqrt(1+4*x-4*x^2+x*O(x^n)))),n)+y*O(y^k),k)}
    

Formula

G.f.: 2/(1+y+(1-y)*sqrt(1+4*x-4*x^2)).
T(n,m) = (-1)^(n-m)*(2*m+1)*Sum_{k=0..n} C(k,n-k)*C(2*k,k-m)/(m+k+1). - Vladimir Kruchinin, Apr 18 2015
Previous Showing 21-30 of 47 results. Next