A361532
Expansion of e.g.f. exp((x + x^2/2)/(1-x)).
Original entry on oeis.org
1, 1, 4, 19, 118, 886, 7786, 78184, 881644, 11017108, 150966856, 2249261356, 36181351504, 624658612384, 11516406883528, 225740649754936, 4686671645814736, 102712289940757264, 2369128149877075264, 57359541280704038128, 1454229915957292684576
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[(x+x^2/2)/(1-x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 08 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x+x^2/2)/(1-x))))
A376474
E.g.f. satisfies A(x) = exp( x^2*A(x)^2 / (1 - x*A(x)) ).
Original entry on oeis.org
1, 0, 2, 6, 84, 840, 14160, 246960, 5438160, 132209280, 3696265440, 114042297600, 3898083752640, 145315002792960, 5886559994515200, 257081021880883200, 12051082491262214400, 603307920100773888000, 32132914081702520486400, 1814085935013542141952000, 108218538908648830498636800
Offset: 0
A387244
Expansion of e.g.f. exp(x^2/(1-x)^4).
Original entry on oeis.org
1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
-
nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]
A113237
E.g.f.: exp(x*(1 - x^3 + x^4)/(1-x)).
Original entry on oeis.org
1, 1, 3, 13, 49, 381, 2971, 26713, 291873, 3262969, 41245651, 569262981, 8433896593, 136060620853, 2342471665899, 42987065380561, 838321137046081, 17272648375895793, 375413770580941603, 8579701021461918589, 205637099039964274161, 5158188565847339152621
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=4, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
-
f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}]; Table[ f[n], {n, 0, 19}]
Range[0, 19]!* CoefficientList[ Series[ Exp[x*(1 - x^3 + x^4)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
A114329
Triangle T(n,k) is the number of partitions of an n-set into lists (cf. A000262) with k lists of size 1.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 36, 24, 12, 0, 1, 240, 180, 60, 20, 0, 1, 1920, 1440, 540, 120, 30, 0, 1, 17640, 13440, 5040, 1260, 210, 42, 0, 1, 183120, 141120, 53760, 13440, 2520, 336, 56, 0, 1, 2116800, 1648080, 635040, 161280, 30240, 4536, 504, 72, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
2, 0, 1;
6, 6, 0, 1;
36, 24, 12, 0, 1;
240, 180, 60, 20, 0, 1;
...
-
t:=taylor(exp(x/(1-x)+(y-1)*x),x,11):for n from 0 to 10 do for k from 0 to n do printf("%d, ",coeff(n!*coeff(t,x,n),y,k)): od: printf("\n"): od: # Nathaniel Johnston, Apr 27 2011
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
`if`(j=1, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 19 2022
-
nn = 10; Table[Take[(Range[0, nn]! CoefficientList[ Series[Exp[ x/(1 - x) - x + y x], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid (* Geoffrey Critzer, Feb 19 2022 *)
A376494
E.g.f. satisfies A(x) = exp(x^2 * A(x)^2 / (1 - x)).
Original entry on oeis.org
1, 0, 2, 6, 84, 720, 12000, 178920, 3744720, 79531200, 2056652640, 56284351200, 1753673423040, 58443081016320, 2142625074670080, 83948606126985600, 3549356731374854400, 159643527455123712000, 7656564912324122995200
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x^2/(1-x))/2)))
-
a(n) = n!*sum(k=0, n\2, (2*k+1)^(k-1)*binomial(n-k-1, n-2*k)/k!);
A386514
Expansion of e.g.f. exp(x^2/(1-x)^3).
Original entry on oeis.org
1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0
a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
-
nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)
A076126
Triangle T(n,k) of associated Lah numbers, n>=2, k=1..floor(n/2).
Original entry on oeis.org
2, 6, 24, 12, 120, 120, 720, 1080, 120, 5040, 10080, 2520, 40320, 100800, 40320, 1680, 362880, 1088640, 604800, 60480, 3628800, 12700800, 9072000, 1512000, 30240, 39916800, 159667200, 139708800, 33264000, 1663200, 479001600
Offset: 2
2; 6; 24, 12; 120,120; 720,1080,120; 5040,10080, 2520; ...
A271706
Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0
Triangle starts:
[ 1]
[-1, 1]
[ 1, 0, 1]
[-1, 3, 3, 1]
[ 1, 8, 18, 8, 1]
[-1, 45, 110, 70, 15, 1]
[ 1, 264, 795, 640, 195, 24, 1]
[-1, 1855, 6489, 6335, 2485, 441, 35, 1]
-
L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)):
T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n):
seq(seq(T(n, k), k=0..n), n=0..9);
# Or:
T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1):
for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025
Comments