cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A361532 Expansion of e.g.f. exp((x + x^2/2)/(1-x)).

Original entry on oeis.org

1, 1, 4, 19, 118, 886, 7786, 78184, 881644, 11017108, 150966856, 2249261356, 36181351504, 624658612384, 11516406883528, 225740649754936, 4686671645814736, 102712289940757264, 2369128149877075264, 57359541280704038128, 1454229915957292684576
Offset: 0

Views

Author

Seiichi Manyama, Mar 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[(x+x^2/2)/(1-x)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 08 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x+x^2/2)/(1-x))))

Formula

a(n) = (2*n-1) * a(n-1) - (n-1)*(n-3) * a(n-2) - binomial(n-1,2) * a(n-3) for n > 2.
a(n) ~ 2^(-3/4) * 3^(1/4) * exp(-5/4 + sqrt(6*n) - n) * n^(n - 1/4) * (1 + sqrt(3)/(2*sqrt(2*n))). - Vaclav Kotesovec, Mar 20 2023

A376474 E.g.f. satisfies A(x) = exp( x^2*A(x)^2 / (1 - x*A(x)) ).

Original entry on oeis.org

1, 0, 2, 6, 84, 840, 14160, 246960, 5438160, 132209280, 3696265440, 114042297600, 3898083752640, 145315002792960, 5886559994515200, 257081021880883200, 12051082491262214400, 603307920100773888000, 32132914081702520486400, 1814085935013542141952000, 108218538908648830498636800
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (n+1)^(k-1)*binomial(n-k-1, n-2*k)/k!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*exp(-x^2 / (1 - x)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n+1)^(k-1) * binomial(n-k-1,n-2*k)/k!.
a(n) ~ s^2 * (2-r*s) * n^(n-1) / (sqrt(2 - 2*r*s + 4*r^2*s^2 - 4*r^3*s^3 + r^4*s^4) * r^(n-1) * exp(n)), where r = exp(1 - sqrt(7/3) * cos(arctan(3^(-3/2))/3) + sqrt(7) * sin(arctan(3^(-3/2))/3)) * ((1 + sqrt(7) * cos(arctan(3^(3/2))/3) - sqrt(21) * sin(arctan(3^(3/2))/3))/3) = 0.311460490854501594554904428274272083649... and s = exp(-1 + sqrt(7/3) * cos(arctan(3^(-3/2))/3) - sqrt(7) * sin(arctan(3^(-3/2))/3)) = 1.428887069084244135127491236860585605773... - Vaclav Kotesovec, Sep 24 2024

A387244 Expansion of e.g.f. exp(x^2/(1-x)^4).

Original entry on oeis.org

1, 0, 2, 24, 252, 2880, 38280, 594720, 10565520, 209502720, 4558407840, 107702179200, 2744400415680, 75016089308160, 2189152249764480, 67906418407027200, 2230160988344889600, 77271779968704921600, 2815893910009609228800, 107629691727791474841600, 4304364116456244429388800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2025

Keywords

Comments

In general, if s >= 1, 1 <= r <= s and e.g.f. = exp(x^r/(1-x)^s) then for n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + (s-r)*k - 1, s*k - 1)/k!.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x^2/(1-x)^4))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Aug 25 2025
  • Mathematica
    nmax=20; CoefficientList[Series[E^(x^2/(1-x)^4), {x, 0, nmax}], x] * Range[0, nmax]!
    nmax=20; Join[{1}, Table[n!*Sum[Binomial[n+2*k-1, 4*k-1]/k!, {k, 1, n}], {n, 1, nmax}]]
    Join[{1}, Table[n!*n*(n - 1)*(n + 1)/6 * HypergeometricPFQ[{1 - n/2, 3/2 - n/2, 1 + n/2, 3/2 + n/2}, {5/4, 3/2, 7/4, 2}, 1/16], {n, 1, 20}]]

Formula

For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n + 2*k - 1, 4*k - 1)/k!.
a(n) = 5*(n-1)*a(n-1) - 2*(n-1)*(5*n-11)*a(n-2) + 2*(n-2)*(n-1)*(5*n-14)*a(n-3) - 5*(n-4)*(n-3)*(n-2)*(n-1)*a(n-4) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ 2^(1/5) * 5^(-1/2) * exp(1/80 - 2^(-9/5)*n^(2/5)/3 + 5*2^(-8/5)*n^(4/5) - n) * n^(n - 1/10).

A113237 E.g.f.: exp(x*(1 - x^3 + x^4)/(1-x)).

Original entry on oeis.org

1, 1, 3, 13, 49, 381, 2971, 26713, 291873, 3262969, 41245651, 569262981, 8433896593, 136060620853, 2342471665899, 42987065380561, 838321137046081, 17272648375895793, 375413770580941603, 8579701021461918589, 205637099039964274161, 5158188565847339152621
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2005

Keywords

Comments

Number of partitions of {1,..,n} into any number of lists of size not equal to 4, where a list means an ordered subset, cf. A000262.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=4, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}]; Table[ f[n], {n, 0, 19}]
    Range[0, 19]!* CoefficientList[ Series[ Exp[x*(1 - x^3 + x^4)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)

Formula

Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 4*k, -1, -1]/k!, {k, 0, Floor[n/4]}], n=0, 1....
Recurrence: a(n) = (2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) - 4*(n-3)*(n-2)*(n-1)*a(n-4) + 8*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - 4*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - Vaclav Kotesovec, Jun 24 2013
a(n) ~ n^(n-1/4)*exp(-3/2+2*sqrt(n)-n)/sqrt(2) * (1 + 187/(48*sqrt(n))). - Vaclav Kotesovec, Jun 24 2013

A114329 Triangle T(n,k) is the number of partitions of an n-set into lists (cf. A000262) with k lists of size 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 36, 24, 12, 0, 1, 240, 180, 60, 20, 0, 1, 1920, 1440, 540, 120, 30, 0, 1, 17640, 13440, 5040, 1260, 210, 42, 0, 1, 183120, 141120, 53760, 13440, 2520, 336, 56, 0, 1, 2116800, 1648080, 635040, 161280, 30240, 4536, 504, 72, 0, 1
Offset: 0

Views

Author

Vladeta Jovovic, Feb 06 2006

Keywords

Comments

The average number of size 1 lists goes to 1 as n->infinity. In other words, lim_{n->infinity} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. - Geoffrey Critzer, Feb 20 2022 (after asymptotic limits by Vaclav Kotesovec given in A000262)

Examples

			Triangle begins:
    1;
    0,   1;
    2,   0,  1;
    6,   6,  0,  1;
   36,  24, 12,  0, 1;
  240, 180, 60, 20, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    t:=taylor(exp(x/(1-x)+(y-1)*x),x,11):for n from 0 to 10 do for k from 0 to n do printf("%d, ",coeff(n!*coeff(t,x,n),y,k)): od: printf("\n"): od: # Nathaniel Johnston, Apr 27 2011
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
         `if`(j=1, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    nn = 10; Table[Take[(Range[0, nn]! CoefficientList[ Series[Exp[ x/(1 - x) - x + y x], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid (* Geoffrey Critzer, Feb 19 2022 *)

Formula

E.g.f.: exp(x/(1-x)+(y-1)*x). More generally, e.g.f. for number of partitions of n-set into lists with k lists of size m is exp(x/(1-x)+(y-1)*x^m).

A376494 E.g.f. satisfies A(x) = exp(x^2 * A(x)^2 / (1 - x)).

Original entry on oeis.org

1, 0, 2, 6, 84, 720, 12000, 178920, 3744720, 79531200, 2056652640, 56284351200, 1753673423040, 58443081016320, 2142625074670080, 83948606126985600, 3549356731374854400, 159643527455123712000, 7656564912324122995200
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x^2/(1-x))/2)))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (2*k+1)^(k-1)*binomial(n-k-1, n-2*k)/k!);

Formula

E.g.f.: exp( -LambertW(-2*x^2 / (1-x))/2 ).
a(n) = n! * Sum_{k=0..floor(n/2)} (2*k+1)^(k-1) * binomial(n-k-1,n-2*k)/k!.
a(n) ~ sqrt(16 + 2*exp(-1) - 2*exp(-1/2)*sqrt(exp(-1)+8)) * (exp(1/2)*sqrt(exp(-1)+8) - 1) * 2^(2*n-2) * n^(n-1) / ((4 + exp(-1) - exp(-1/2)*sqrt(exp(-1)+8)) * (sqrt(1 + 8*exp(1)) - 1)^n). - Vaclav Kotesovec, Aug 05 2025

A386514 Expansion of e.g.f. exp(x^2/(1-x)^3).

Original entry on oeis.org

1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0

Views

Author

Enrique Navarrete, Aug 23 2025

Keywords

Comments

For n > 0, a(n) is the number of ways to linearly order n distinguishable objects into one or several lines and then choose 2 objects from each line. If the lines are also linearly ordered see A364524.
A001804(n) is the number of ways if only 1 line is used.

Examples

			a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
    nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)

Formula

From Vaclav Kotesovec, Aug 24 2025: (Start)
For n > 0, a(n) = n! * Sum_{k=1..n} binomial(n+k-1, 3*k-1) / k!.
a(n) = 4*(n-1)*a(n-1) - 2*(n-1)*(3*n-7)*a(n-2) + (n-2)*(n-1)*(4*n-11)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(1/8) * exp(1/27 - 3^(-5/4)*n^(1/4)/8 - 3^(-1/2)*n^(1/2)/2 + 4*3^(-3/4)*n^(3/4) - n) * n^(n-1/8) / 2. (End)

A076126 Triangle T(n,k) of associated Lah numbers, n>=2, k=1..floor(n/2).

Original entry on oeis.org

2, 6, 24, 12, 120, 120, 720, 1080, 120, 5040, 10080, 2520, 40320, 100800, 40320, 1680, 362880, 1088640, 604800, 60480, 3628800, 12700800, 9072000, 1512000, 30240, 39916800, 159667200, 139708800, 33264000, 1663200, 479001600
Offset: 2

Views

Author

Keywords

Comments

Number of partitions of {1,..,n} into k lists of size >1, where a list means an ordered subset, cf. A008297.

Examples

			2; 6; 24, 12; 120,120; 720,1080,120; 5040,10080, 2520; ...
		

Crossrefs

Row sums give A052845, A008306, A008299.

Formula

T(n, k) = n!/k!*binomial(n-k-1, k-1), n>=2, k=1..floor(n/2). G.f.: G.f.: Sum_{n>=2, k=1..floor(n/2)} T(n, k)*x^n*y^k/n! = exp(x^2*y/(1-x))-1.

A271706 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0

Views

Author

Peter Luschny, Apr 20 2016

Keywords

Examples

			Triangle starts:
  [ 1]
  [-1,    1]
  [ 1,    0,    1]
  [-1,    3,    3,    1]
  [ 1,    8,   18,    8,    1]
  [-1,   45,  110,   70,   15,   1]
  [ 1,  264,  795,  640,  195,  24,  1]
  [-1, 1855, 6489, 6335, 2485, 441, 35, 1]
		

Crossrefs

A052845 (row sums), A000240 (col. 1), A000274 (col. 2), A067998 (diag n,n-1).

Programs

  • Maple
    L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)):
    T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9);
    # Or:
    T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1):
    for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025

Formula

T(n, k) = (-1)^(k-n)*binomial(n, k)*hypergeom([k-n, k], [], 1). (After a formula of Natalia L. Skirrow in A271705.) - Peter Luschny, Jun 25 2025
Previous Showing 11-19 of 19 results.