cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A321227 Number of connected multiset partitions with multiset density -1 of strongly normal multisets of size n.

Original entry on oeis.org

0, 1, 3, 6, 17, 43, 147, 458, 1729, 6445, 27011
Offset: 0

Views

Author

Gus Wiseman, Oct 31 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing.

Examples

			The a(1) = 1 through a(4) = 17 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
         {{1},{1}}  {{1,2,3}}      {{1,1,2,2}}
                    {{1},{1,1}}    {{1,1,2,3}}
                    {{1},{1,2}}    {{1,2,3,4}}
                    {{1},{1},{1}}  {{1},{1,1,1}}
                                   {{1,1},{1,1}}
                                   {{1},{1,1,2}}
                                   {{1,1},{1,2}}
                                   {{1},{1,2,2}}
                                   {{1},{1,2,3}}
                                   {{1,2},{1,3}}
                                   {{2},{1,1,2}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{1,2}}
                                   {{1},{2},{1,2}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    mensity[c_]:=Total[(Length[Union[#]]-1&)/@c]-Length[Union@@c];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Sum[Length[Select[mps[m],And[mensity[#]==-1,Length[csm[#]]==1]&]],{m,strnorm[n]}],{n,0,8}]

A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k).

Original entry on oeis.org

1, 3, 1, 16, 1, 125, 15, 1, 1296, 1, 16807, 735, 140, 1, 262144, 1, 4782969, 76545, 1890, 1, 100000000, 112000, 1, 2357947691, 13835745, 33264, 1, 61917364224, 1, 1792160394037, 3859590735, 270670400, 35135100, 720720, 1, 56693912375296, 1, 1946195068359375
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2019

Keywords

Comments

A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges.

Examples

			Triangle begins:
           1
           3          1
          16          1
         125         15          1
        1296          1
       16807        735        140          1
      262144          1
     4782969      76545       1890          1
   100000000     112000          1
  2357947691   13835745      33264          1
The T(4,2) = 15 hypertrees:
  {{1,4,5},{2,3,5}}
  {{1,4,5},{2,3,4}}
  {{1,3,5},{2,4,5}}
  {{1,3,5},{2,3,4}}
  {{1,3,4},{2,4,5}}
  {{1,3,4},{2,3,5}}
  {{1,2,5},{3,4,5}}
  {{1,2,5},{2,3,4}}
  {{1,2,5},{1,3,4}}
  {{1,2,4},{3,4,5}}
  {{1,2,4},{2,3,5}}
  {{1,2,4},{1,3,5}}
  {{1,2,3},{3,4,5}}
  {{1,2,3},{2,4,5}}
  {{1,2,3},{1,4,5}}
		

Crossrefs

Programs

  • Maple
    T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}]

Formula

T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k).

Extensions

Edited by Peter Munn, Mar 05 2025

A334986 a(n) = exp(n) * Sum_{k>=0} (-1)^k * n^(k-1) * k^(n-1) / k!.

Original entry on oeis.org

1, -1, 2, -5, 9, 53, -1107, 12983, -116470, 560049, 8370713, -346902877, 7551856337, -117404648467, 913399734614, 22560135521007, -1393700803877939, 44331044030953865, -979905458659247779, 10462396536804802459, 367799071887303276422, -30046998012662824941947
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k StirlingS2[n - 1, k] n^(k - 1), {k, 0, n - 1}], {n, 1, 22}]
    Table[BellB[n - 1, -n]/n, {n, 1, 22}]
  • PARI
    a(n)={sum(k=0, n-1, (-1)^k * stirling(n-1,k,2) * n^(k-1))} \\ Andrew Howroyd, May 18 2020

Formula

a(n) = Sum_{k=0..n-1} (-1)^k * Stirling2(n-1,k) * n^(k-1).
a(n) = BellPolynomial_(n-1)(-n) / n.

A322112 Number of non-isomorphic self-dual connected multiset partitions of weight n with no singletons and multiset density -1.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 4, 4, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(10) = 9 multiset partitions:
  {{11}}  {{111}}  {{1111}}  {{11111}}    {{111111}}    {{1111111}}
                             {{11}{122}}  {{22}{1122}}  {{111}{1222}}
                                                        {{22}{11222}}
                                                        {{11}{12}{233}}
.
  {{11111111}}      {{111111111}}        {{1111111111}}
  {{111}{11222}}    {{1111}{12222}}      {{1111}{112222}}
  {{22}{112222}}    {{22}{1122222}}      {{22}{11222222}}
  {{11}{122}{233}}  {{222}{111222}}      {{222}{1112222}}
                    {{11}{11}{12233}}    {{111}{122}{2333}}
                    {{11}{113}{2233}}    {{22}{113}{23333}}
                    {{12}{111}{2333}}    {{22}{1133}{2233}}
                    {{22}{113}{2333}}    {{33}{33}{112233}}
                    {{12}{13}{22}{344}}  {{11}{14}{223}{344}}
		

Crossrefs

A357394 E.g.f. satisfies A(x) = exp(x * exp(2 * A(x))) - 1.

Original entry on oeis.org

0, 1, 5, 55, 953, 22651, 685525, 25222359, 1093148145, 54549313651, 3080446982221, 194213549023407, 13522789698386281, 1030619149263349387, 85336828127587240261, 7628421633465044832391, 732208108150442899232737, 75108533335473988089786147
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(2*n)^(k-1) * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2022 *)
  • PARI
    a(n) = sum(k=1, n, (2*n)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} (2 * n)^(k-1) * Stirling2(n,k).
a(n) ~ n^(n-1) / (2 * sqrt(1 + LambertW(1/2)) * LambertW(1/2)^n * exp(n*(3 - 1/LambertW(1/2)))). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( exp(-2*x) * log(1 + x) ). - Seiichi Manyama, Sep 10 2024

A357395 E.g.f. satisfies A(x) = exp(x * exp(3 * A(x))) - 1.

Original entry on oeis.org

0, 1, 7, 109, 2677, 90226, 3873007, 202134997, 12427851625, 879806921041, 70486590597331, 6304879010400202, 622838214328334077, 67347956304168803173, 7911963620634266270071, 1003477119181096373029261, 136658009168055564212000209, 19889317400287888238121299854
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*n)^(k-1) * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 14 2022 *)
  • PARI
    a(n) = sum(k=1, n, (3*n)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} (3 * n)^(k-1) * Stirling2(n,k).
a(n) ~ n^(n-1) / (3 * sqrt(1 + LambertW(1/3)) * LambertW(1/3)^n * exp(n*(4 - 1/LambertW(1/3)))). - Vaclav Kotesovec, Nov 14 2022
E.g.f.: Series_Reversion( exp(-3*x) * log(1 + x) ). - Seiichi Manyama, Sep 10 2024

A367752 Number of shapes of labeled rooted hypertrees with n vertices.

Original entry on oeis.org

1, 1, 4, 29, 256, 3007, 42932, 721121, 13982563, 306967231, 7527903208, 203977383469, 6051630040496, 195111205542541, 6792697846367791, 253966747582533681, 10149075292428481965, 431705938073882999275, 19474660918369182445456, 928660364396786865580881
Offset: 1

Views

Author

Paul Laubie, Nov 29 2023

Keywords

Comments

The shape of a labeled rooted hypertree is a labeled rooted hypertrees where we replace all the maximal subtrees by a corolla rooted on a new unlabeled black vertex.
If we remove the black vertices that are the parent of only 1 white vertex, we obtain labeled rooted hypertrees with black and white vertices such that:
- black vertices are unlabeled;
- black vertices have at least two children;
- the children of a black vertex are white, and are connected to it via simple edges (edges connecting only two vertices);
- the children of a white vertex are connected to it via hyperedges (edges connecting strictly more than two vertices).

Examples

			For n = 3 the a(3) = 4 solutions are:
  - the corolla with a black root which have 3 white children,
  - and the 3 possible labeling of the hypertree with a white root which have 2 white children connected to it via a hyperedge.
		

Crossrefs

Programs

  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(serreverse(log(1+x)*exp(-exp(x)+x+1)))) \\ Michel Marcus, Nov 30 2023
  • SageMath
    R.=PowerSeriesRing(QQ);(ln(1+t)*exp(-exp(t)+t+1)).reverse().egf_to_ogf().list()[1:]
    

Formula

E.g.f.: series reversion of log(1+x)*exp(-exp(x)+x+1).

A370949 Triangle read by rows: T(n,k) is the number of forests of labeled rooted Greg hypertrees with n white vertices and k black vertices, 0 <= k < n.

Original entry on oeis.org

1, 3, 1, 19, 16, 3, 189, 268, 115, 15, 2576, 5221, 3655, 1050, 105, 44683, 118599, 117236, 54040, 11655, 945, 941977, 3102184, 3996384, 2581138, 883575, 152460, 10395, 23388025, 92149019, 147043422, 123318510, 58806055, 15980580, 2297295, 135135
Offset: 1

Views

Author

Paul Laubie, Mar 06 2024

Keywords

Comments

A rooted Greg hypertree is a hypertree with black and white vertices such that white vertices are labeled, black vertices are unlabeled, and each black vertex has at least two children.
See A048160 for the analog sequence for Greg trees.

Examples

			Triangle T(n,k) begins:
n\k    0     1     2     3     4 ...
1      1;
2      3,    1;
3     19,   16,    3;
4    189,  268,  115,   15;
5   2576, 5221, 3655, 1050,  105;
...
		

Crossrefs

Cf. A048160, A052888 (k=0), A001147 (k=n-1).
Row sums are A364816.

Programs

  • PARI
    T(n)={my(x='x+O('x^(n+1))); [Vecrev(p) | p <- Vec(serlaplace(serreverse( (log(1+x) - y*exp(x) + y*x + y)*exp(-x) )))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Mar 06 2024

Formula

E.g.f.: series reversion in t of (log(1+t) - u*exp(t) + u*t + u)*exp(-t), where the formal variable u encodes the number of black vertices.
T(n,0) = A052888(n).
T(n,n-1) = A001147(n).

A224079 E.g.f. is series reversion of log(1+x)/cosh(x).

Original entry on oeis.org

1, 1, 4, 25, 191, 1981, 24515, 357393, 6014944, 114374701, 2429126965, 56973837097, 1462548099325, 40790689845725, 1228180553509096, 39706476998683809, 1371869867621426343, 50445615936195883981, 1967026296214873286071, 81070802180747506986681
Offset: 1

Views

Author

Paul D. Hanna, Jul 20 2013

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 191*x^5/5! + 1981*x^6/6! +...
		

Crossrefs

Cf. A052888.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[Log[1+x]/Cosh[x], {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n));n!*polcoeff(serreverse(log(1+X)/cosh(X)), n)}
    for(n=1,25,print1(a(n),", "))

Formula

E.g.f. satisfies: 1 + A(x) = exp(x*cosh(A(x))).
a(n) ~ n^(n-1) * ((1+s)*sinh(s))^n * sqrt((1+s)/(1+s+tanh(s))) / exp(n), where s = 0.96996536567590308324... is the root of the equation (1+s)*log(1+s)*tanh(s) = 1. - Vaclav Kotesovec, Jan 13 2014

A332915 Decimal expansion of the constant W(1) + 1/W(1), where W is Lambert's function.

Original entry on oeis.org

2, 3, 3, 0, 3, 6, 6, 1, 2, 4, 7, 6, 1, 6, 8, 0, 5, 8, 3, 2, 2, 5, 1, 7, 0, 4, 3, 9, 1, 6, 2, 0, 6, 2, 6, 3, 0, 1, 8, 9, 8, 3, 3, 7, 7, 3, 8, 5, 3, 9, 8, 6, 1, 4, 2, 7, 0, 5, 5, 8, 7, 9, 8, 4, 7, 7, 0, 3, 2, 1, 6, 4, 0, 2, 7, 3, 6, 8, 0, 3, 0, 3, 4, 8, 2, 3, 0
Offset: 1

Views

Author

Martin Renner, Mar 02 2020

Keywords

Comments

The graph of the exponential function exp(x) moved to the right by W(1) + 1/W(1) touches the graph of the natural logarithm log(x) at point (x,y) = (1/W(1), W(1)) = (A030797, A030178).

Examples

			2.33036612476168058322517043916206263018983377385398...
		

Crossrefs

Programs

  • Maple
    evalf[200](LambertW(1) + 1/LambertW(1));
  • Mathematica
    RealDigits[N[LambertW[1] + 1/LambertW[1], 120]][[1]] (* Vaclav Kotesovec, Mar 02 2020 *)
  • PARI
    my(x=lambertw(1)); x+1/x \\ Michel Marcus, Mar 02 2020

Formula

Equals 2 + Integral_{x=0..1} W(x) dx. - Amiram Eldar, Jul 18 2021
Previous Showing 21-30 of 32 results. Next