cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A357640 Number of reversed integer partitions of 2n whose skew-alternating sum is 0.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 24, 40, 59, 93, 136, 208, 299, 445, 632, 921, 1292, 1848, 2563, 3610, 4954, 6881, 9353, 12835, 17290, 23469, 31357, 42150, 55889, 74463, 98038, 129573, 169476, 222339, 289029, 376618, 486773, 630313, 810285, 1043123, 1334174
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			The a(0) = 1 through a(5) = 9 partitions:
  ()  (11)  (22)    (33)      (44)        (55)
            (1111)  (2211)    (2222)      (3322)
                    (111111)  (3221)      (4321)
                              (3311)      (4411)
                              (221111)    (222211)
                              (11111111)  (322111)
                                          (331111)
                                          (22111111)
                                          (1111111111)
		

Crossrefs

The non-reverse half-alternating version is A035363/A035444.
The non-reverse version appears to be A035544/A035594.
These partitions are ranked by A357632, half A357631.
The half-alternating version is A357639.
A000041 counts integer partitions (also reversed integer partitions).
A316524 gives alternating sum of prime indices, reverse A344616.
A344651 counts alternating sum of partitions by length, ordered A097805.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[2n],skats[Reverse[#]]==0&]],{n,0,15}]

Extensions

a(31) onwards from Lucas A. Brown, Oct 19 2022

A357642 Number of even-length integer compositions of 2n whose half-alternating sum is 0.

Original entry on oeis.org

1, 0, 1, 4, 13, 48, 186, 712, 2717, 10432, 40222, 155384, 601426, 2332640, 9063380, 35269392, 137438685, 536257280, 2094786870, 8191506136, 32063203590, 125613386912, 492516592620, 1932569186288, 7588478653938, 29816630378368, 117226929901676, 461151757861552
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			The a(0) = 1 through a(4) = 13 compositions:
  ()  .  (1111)  (1212)  (1313)
                 (1221)  (1322)
                 (2112)  (1331)
                 (2121)  (2213)
                         (2222)
                         (2231)
                         (3113)
                         (3122)
                         (3131)
                         (111311)
                         (112211)
                         (113111)
                         (11111111)
		

Crossrefs

The skew-alternating version appears to be A000984.
For original alternating sum we have A001700/A088218.
The version for partitions of any length is A357639, ranked by A357631.
For length multiple of 4 we have A110145.
These compositions of any length are ranked by A357625, reverse A357626.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357621 = half-alternating sum of standard compositions, reverse A357622.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[2n],EvenQ[Length[#]]&&halfats[#]==0&]],{n,0,9}]
  • PARI
    a(n) = {my(v, res); if(n < 3, return(1 - bitand(n,1))); res = 0; v = vector(2*n, i, binomial(n-1,i-1)); forstep(i = 4, 2*n, 2, lp = i\4 * 2; rp = i - lp; res += v[lp] * v[rp]; ); res } \\ David A. Corneth, Oct 13 2022

Extensions

More terms from Alois P. Heinz, Oct 12 2022

A000025 Coefficients of the 3rd-order mock theta function f(q).

Original entry on oeis.org

1, 1, -2, 3, -3, 3, -5, 7, -6, 6, -10, 12, -11, 13, -17, 20, -21, 21, -27, 34, -33, 36, -46, 51, -53, 58, -68, 78, -82, 89, -104, 118, -123, 131, -154, 171, -179, 197, -221, 245, -262, 279, -314, 349, -369, 398, -446, 486, -515, 557, -614, 671, -715, 767, -845, 920, -977, 1046, -1148, 1244
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n with even rank minus number with odd rank. The rank of a partition is its largest part minus the number of parts.

Examples

			G.f. = 1 + q - 2*q^2 + 3*q^3 - 3*q^4 + 3*q^5 - 5*q^6 + 7*q^7 - 6*q^8 + 6*q^9 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 82, Examples 4 and 5.
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Other '3rd-order' mock theta functions are at A013953, A053250, A053251, A053252, A053253, A053254, A053255. See also A000039, A000199.

Programs

  • Maple
    a:= m-> coeff(series((1+4*add((-1)^n*q^(n*(3*n+1)/2)/
            (1+q^n), n=1..m))/mul(1-q^i, i=1..m), q, m+1), q, m):
    seq(a(n), n=0..120);
  • Mathematica
    CoefficientList[Series[(1+4Sum[(-1)^n q^(n(3n+1)/2)/(1+q^n), {n, 1, 10}])/Sum[(-1)^n q^(n(3n+1)/2), {n, -8, 8}], {q, 0, 100}], q] (* N. J. A. Sloane *)
    sgn[P_ (* a partition *)] :=
    Signature[
      PermutationList[
       Cycles[Flatten[
         SplitBy[Range[Total[P]], (Function[{x}, x > #1] &) /@
           Accumulate[P]], Length[P] - 1]]]]
    conjugate[P_List(* a partition *)] :=
    Module[{s = Select[P, #1 > 0 &], i, row, r}, row = Length[s];
      Table[r = row; While[s[[row]] <= i, row--]; r, {i, First[s]}]]
    Total[Function[{x}, sgn[x] sgn[conjugate[x]]] /@
        IntegerPartitions[#]] & /@ Range[20]
    (* George Beck, Oct 25 2014 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / Product[ 1 + x^j, {j, k}]^2, {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Jun 30 2015 *)
    rnk[prts_]:=Max[prts]-Length[prts]; mtf[n_]:=Module[{pn=IntegerPartitions[n]},Total[If[ EvenQ[ rnk[#]],1,-1]&/@pn]]; Join[{1},Array[mtf,60]] (* Harvey P. Dale, Sep 13 2024 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2 / prod(i=1, k, 1 + x^i, 1 + x * O(x^(n - k^2)))^2, 1), n))}; /* Michael Somos, Sep 02 2007 */
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(1+1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)^2/(1+x^k))) \\ Seiichi Manyama, May 23 2023

Formula

G.f.: 1 + Sum_{n>=1} (q^(n^2) / Product_{i=1..n} (1 + q^i)^2).
G.f.: (1 + 4 * Sum_{n>=1} (-1)^n * q^(n*(3*n+1)/2) / (1 + q^n)) / Product_{i>=1} (1 - q^i).
a(n) ~ -(-1)^n * exp(Pi*sqrt(n/6)) / (2*sqrt(n)) [Ramanujan]. - Vaclav Kotesovec, Jun 10 2019
G.f.: 1 - Sum_{n >= 1} (-1)^n*x^n/Product_{k = 1..n} 1 + x^k. See Fine, equation 26.22, p. 55. - Peter Bala, Feb 04 2021
From Seiichi Manyama, May 23 2023: (Start)
a(n) = A340601(n) - A340692(n).
G.f.: 1 + (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k)^2 / (1+x^k). (End)

Extensions

Entry improved by comments from Dean Hickerson

A122135 Expansion of f(x, -x^4) / phi(-x^2) in powers of x where f(, ) and phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 26, 31, 40, 48, 60, 72, 89, 106, 130, 154, 186, 220, 264, 310, 370, 433, 512, 598, 704, 818, 958, 1110, 1293, 1494, 1734, 1996, 2308, 2650, 3052, 3496, 4014, 4584, 5248, 5980, 6825, 7760, 8834, 10020, 11380, 12882, 14594
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of integer partitions y of n such that y_i > y_{i+1} for all even i. For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(2211) (421) (332) (432)
(3211) (431) (441)
(521) (531)
(3311) (621)
(4211) (3321)
(4311)
(5211)
The even-length case appears to be A122134.
The odd-length case is A351595.
The alternately unequal version appears to be A122129, even A351008, odd A122130.
The alternately equal version is A351003, even A351012, odd A000009.
The alternately equal and unequal version is A351005, even A035457, odd A351593.
The alternately unequal and equal version is A351006, even A351007, odd A053251. (End)
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 4. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^9 + q^49 + 2*q^89 + 2*q^129 + 3*q^169 + 4*q^209 + 6*q^249 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.5). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(d), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^5] QPochhammer[ x^4, -x^5] QPochhammer[-x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+1))*(1 - x^(20*k+2))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+8))*(1 - x^(20*k+9))*(1 - x^(20*k+11))*(1 - x^(20*k+12))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+18))*(1 - x^(20*k+19)) ), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1) - 1) \2, x^(k^2 + k) / prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n-k^2-k)))), n))};

Formula

Expansion of f(x^2, x^8) / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^3, -x^7) * f(-x^4, -x^16) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))).
Let f(n) = 1/Product_{k >= 0} (1-q^(20k+n)). Then g.f. is f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19); - N. J. A. Sloane, Mar 19 2012.
a(n) ~ (3 + sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A357626 Numbers k such that the reversed k-th composition in standard order has half-alternating sum 0.

Original entry on oeis.org

0, 11, 15, 37, 38, 45, 46, 53, 54, 55, 59, 137, 138, 140, 153, 154, 156, 167, 169, 170, 171, 172, 179, 191, 201, 202, 204, 205, 206, 213, 214, 229, 230, 231, 235, 243, 247, 251, 255, 529, 530, 532, 536, 561, 562, 564, 568, 583, 587, 593, 594, 595, 596, 600
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()
   11: (2,1,1)
   15: (1,1,1,1)
   37: (3,2,1)
   38: (3,1,2)
   45: (2,1,2,1)
   46: (2,1,1,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   55: (1,2,1,1,1)
   59: (1,1,2,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The alternating form is A344619.
Positions of zeros in A357622.
The non-reverse version is A357625.
The skew-alternating form is A357628, reverse A357627.
The version for prime indices is A357631.
The version for Heinz numbers of partitions is A357635.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357637 counts partitions by half-alternating sum, skew A357638.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[0,100],halfats[Reverse[stc[#]]]==0&]

A357630 Skew-alternating sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 0, 3, -1, 4, -1, 0, -2, 5, -2, 6, -3, -1, 0, 7, -3, 8, -3, -2, -4, 9, 1, 0, -5, -2, -4, 10, -4, 11, 1, -3, -6, -1, 0, 12, -7, -4, 2, 13, -5, 14, -5, -3, -8, 15, 2, 0, -5, -5, -6, 16, -1, -2, 3, -6, -9, 17, 1, 18, -10, -4, 0, -3, -6, 19, -7, -7, -6, 20
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 525 are {2,3,3,4} so a(525) = 2 - 3 - 3 + 4 = 0.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The reverse version is A357634.
The half-alternating form is A357629, reverse A357633.
Positions of zeros are A357632, reverse A357636.
The version for standard compositions is A357623, reverse A357624.
These partitions are counted by A357638, half A357637.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[skats[primeMS[n]],{n,30}]

A357634 Skew-alternating sum of the partition having Heinz number n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, -1, 0, 2, 5, 0, 6, 3, 1, 0, 7, -1, 8, 1, 2, 4, 9, 1, 0, 5, -2, 2, 10, 0, 11, 1, 3, 6, 1, 0, 12, 7, 4, 2, 13, 1, 14, 3, -1, 8, 15, 2, 0, -1, 5, 4, 16, -1, 2, 3, 6, 9, 17, 1, 18, 10, 0, 0, 3, 2, 19, 5, 7, 0, 20, 1, 21, 11, -2, 6, 1, 3, 22, 3
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition with Heinz number 525 is (4,3,3,2) so a(525) = 4 - 3 - 3 + 2 = 0.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The non-reverse version is A357630.
The half-alternating form is A357633, non-reverse A357629.
Positions of zeros are A357636, non-reverse A357632.
The version for standard compositions is A357624, non-reverse A357623.
These partitions are counted by A357638, half A357637.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[skats[Reverse[primeMS[n]]],{n,30}]

A122134 Expansion of Sum_{k>=0} x^(k^2+k)/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 18, 24, 28, 36, 42, 54, 62, 78, 91, 112, 130, 159, 184, 222, 258, 308, 356, 424, 488, 576, 664, 778, 894, 1044, 1196, 1389, 1590, 1838, 2098, 2419, 2754, 3162, 3596, 4114, 4668, 5328, 6032, 6864, 7760, 8806, 9936, 11252
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, Oct 10 2007

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
In Watson 1937 page 275 he writes "Psi_0(q^{1/2},q) = prod_1^oo (1+q^{2n}) G(-q^2)" so this is the expansion in powers of q^2. - Michael Somos, Jun 29 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of even-length integer partitions y of n such that y_i != y_{i+1} for all even i. For example, the a(2) = 1 through a(9) = 7 partitions are:
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(2211) (3211) (71) (81)
(3311) (3321)
(4211) (4311)
(5211)
This appears to be the even-length version of A122135.
The odd-length version is A351595.
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 3. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = q + q^81 + q^121 + 2*q^161 + 2*q^201 + 4*q^241 + 4*q^281 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(c), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.6). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / QPochhammer[ x, x, 2 k], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient [ 1 / (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2]), {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+2))*(1 - x^(20*k+3))*(1 - x^(20*k+4))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+7))*(1 - x^(20*k+13))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+16))*(1 - x^(20*k+17)) *(1 - x^(20*k+18))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n -k^2-k)))), n))};

Formula

Euler transform of period 20 sequence [ 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...].
Expansion of f(x^4, x^6) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 29 2015
Expansion of f(-x^2, x^3) / phi(-x^2) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jun 29 2015
Expansion of G(-x) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 29 2015
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))).
Expansion of f(-x, -x^9) * f(-x^8, -x^12) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is the Ramanujan general theta function.
a(n) = number of partitions of n into parts that are each either == 2, 3, ..., 7 (mod 20) or == 13, 14, ..., 18 (mod 20). - Michael Somos, Jun 29 2015 [corrected by Vaclav Kotesovec, Nov 12 2016]
a(n) ~ (3 - sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A053250 Coefficients of the '3rd-order' mock theta function phi(q).

Original entry on oeis.org

1, 1, 0, -1, 1, 1, -1, -1, 0, 2, 0, -2, 1, 1, -1, -2, 1, 3, -1, -2, 1, 2, -2, -3, 1, 4, 0, -4, 2, 3, -2, -4, 1, 5, -2, -5, 3, 5, -3, -5, 2, 7, -2, -7, 3, 6, -4, -8, 3, 9, -2, -9, 5, 9, -5, -10, 3, 12, -4, -12, 5, 11, -6, -13, 6, 16, -6, -15, 7, 15, -8, -17, 7, 19, -6, -20, 9, 19, -10, -22, 8, 25, -9, -25, 12, 25, -12, -27, 11, 31
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Examples

			G.f. = 1 + x - x^3 + x^4 + x^5 - x^6 - x^7 + 2*x^9 - 2*x^11 + x^12 + x^13 - x^14 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.12), p. 58, Eq. (26.56).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 17, 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053251, A053252, A053253, A053254, A053255.

Programs

  • Maple
    f:=n->q^(n^2)/mul((1+q^(2*i)),i=1..n); add(f(n),n=0..10);
  • Mathematica
    Series[Sum[q^n^2/Product[1+q^(2k), {k, 1, n}], {n, 0, 10}], {q, 0, 100}]
    a[ n_] := SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ -x^2, x^2, k], {k, 0, Sqrt@ n}], {x, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = my(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 + x^(2*k)) + O(x^(n - (k-1)^2 + 1)), 1), n))}; /* Michael Somos, Jul 16 2007 */

Formula

Consider partitions of n into distinct odd parts. a(n) = number of them for which the largest part minus twice the number of parts is == 3 (mod 4) minus the number for which it is == 1 (mod 4).
a(n) = (-1)^n*(A027358(n)-A027357(n)). - Vladeta Jovovic, Mar 12 2006
G.f.: 1 + Sum_{k>0} x^k^2 / ((1 + x^2) (1 + x^4) ... (1 + x^(2*k))).
G.f. 1 + Sum_{n >= 0} x^(2*n+1)*Product_{k = 1..n} (x^(2*k-1) - 1) (Folsom et al.). Cf. A207569 and A215066. - Peter Bala, May 16 2017

A357632 Numbers k such that the skew-alternating sum of the prime indices of k is 0.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 90, 100, 121, 144, 169, 196, 210, 225, 256, 289, 324, 360, 361, 400, 441, 462, 484, 525, 529, 550, 576, 625, 676, 729, 784, 840, 841, 858, 900, 910, 961, 1024, 1089, 1155, 1156, 1225, 1296, 1326, 1369, 1440, 1444, 1521, 1600
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    36: {1,1,2,2}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   100: {1,1,3,3}
   121: {5,5}
   144: {1,1,1,1,2,2}
		

Crossrefs

The version for original alternating sum is A000290.
The version for standard compositions is A357627, reverse A357628.
Positions of zeros in A357630, reverse A357634.
The half-alternating form is A357631, reverse A357635.
The reverse version is A357636.
These partitions are counted by A357640, half A357639.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Select[Range[1000],skats[primeMS[#]]==0&]
Previous Showing 11-20 of 66 results. Next