cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A339870 Composite numbers k of the form 4u+1 for which the odd part of phi(k) divides k-1.

Original entry on oeis.org

85, 561, 1105, 1261, 1285, 2465, 4369, 6601, 8245, 8481, 9061, 9605, 10585, 16405, 16705, 17733, 18721, 19669, 21845, 23001, 28645, 30889, 38165, 42121, 43165, 46657, 54741, 56797, 57205, 62745, 65365, 74593, 78013, 83665, 88561, 91001, 106141, 117181, 124645, 126701, 134521, 136981, 141661, 162401, 171205, 176437
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2020

Keywords

Comments

From Antti Karttunen, Dec 26 2020: (Start)
Equally, squarefree composite numbers k of the form 4u+1 for which A336466(k) divides k-1. This follows because on squarefree n, A336466(n) = A053575(n).
No common terms with A016105, because 4xy + 2(x+y) + 1 does not divide 4xy + 3(x+y) + 2 for any distinct x, y >= 0 (where 4x+3 and 4y+3 are the two prime factors of Blum integers).
This can also seen by another way: If this sequence contained any Blum integers, then, because A016105 is a subsequence of A339817, we would have found a composite number n satisfying Lehmer's totient problem y * phi(n) = n-1, for some integer y > 1. But Lehmer proved that such solutions should have at least 7 distinct prime factors, while Blum integers have only two.
Moreover, it seems that none of the terms of A167181 may occur here, and a few of A137409 (i.e., of A125667). See A339875 for those terms.
(End)

Examples

			85 = 4*21 + 1 = 5*17, thus phi(85) = 4*16 = 64, the odd part of which is A000265(64) = 1, which certainly divides 85-1, therefore 85 is included as a term.
561 = 4*140 + 1 = 3*11*17, thus phi(561) = 2*10*16 = 320, the odd part of which is A000265(320) = 5, which divides 560, therefore 561 is included.
		

Crossrefs

Subsequence of A005117.
Intersection of A091113 and A339880.
Cf. A339875 (a subsequence).
Cf. also comments in A339817.

Programs

  • Mathematica
    odd[n_] := n/2^IntegerExponent[n, 2]; Select[4*Range[45000] + 1, CompositeQ[#] && Divisible[# - 1, odd[EulerPhi[#]]] &] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA339870(n) = ((n>1)&&!isprime(n)&&(1==(n%4))&&!((n-1)%A000265(eulerphi(n))));

A279186 Maximal entry in n-th row of A279185.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 4, 1, 2, 2, 1, 1, 1, 2, 6, 1, 2, 4, 10, 1, 4, 2, 6, 2, 3, 1, 4, 1, 4, 1, 2, 2, 6, 6, 2, 1, 4, 2, 6, 4, 2, 10, 11, 1, 6, 4, 1, 2, 12, 6, 4, 2, 6, 3, 28, 1, 4, 4, 2, 1, 2, 4, 10, 1, 10, 2, 12, 2, 6, 6, 4, 6, 4, 2, 12, 1, 18, 4, 20, 2, 1, 6, 3, 4
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2016

Keywords

Comments

See A256608 for LCM of entries in row n.
From Robert Israel, Dec 15 2016: (Start)
If m and k are coprime then a(m*k) = lcm(a(m), a(k)).
If n is in A061345 and r = A053575(n) is in A167791, then a(n) = A000010(r). (End)

Crossrefs

Start is same as A256607 and A256608. However, all three are different.

Programs

  • Maple
    A279186 := proc(n)
        local a,k ;
        a := 1 ;
        for k from 0 to n-1 do
            a := max(a,A279185(k,n)) ;
        end do:
        a ;
    end proc : # R. J. Mathar, Dec 15 2016
  • Mathematica
    T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
    a[n_] := Table[T[n, k], {k, 0, n - 1}] // Max;
    Array[a, 90] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
  • PARI
    { A279186(n) = my(r=lcm(znstar(n)[2])); znorder(Mod(2,r>>valuation(r,2))); } \\ Max Alekseyev, Feb 02 2024

Formula

a(n) = A007733(A002322(n)). - Max Alekseyev, Feb 02 2024

A339901 a(n) = A339971(n) / gcd(A339809(2*n), A339971(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 15, 3, 5, 15, 1, 3, 3, 3, 1, 9, 9, 9, 15, 15, 5, 15, 9, 45, 5, 45, 1, 1, 1, 1, 3, 3, 1, 3, 5, 1, 5, 5, 5, 15, 15, 15, 3, 3, 1, 3, 9, 9, 3, 9, 1, 15, 15, 15, 15, 9, 45, 45, 1, 9, 9, 9, 9, 27, 27, 27, 45, 45, 5, 45, 135, 135, 45, 135, 9, 27, 27, 27, 3, 81, 81, 81, 135, 27, 45, 135, 405
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Comments

Compare also to the scatter plot of A339898.

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339901(n) = { my(x=A019565(2*n), y=A000265(eulerphi(x))); y/gcd((x-1),y); };

Formula

a(n) = A339971(n) / A339899(n).
a(n) = A000265(A160595(A019565(2*n))).
a(n) = A340075(A019565(n)) = A340085(A019565(2*n)).

A339971 Odd part of A339821(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 15, 15, 15, 15, 3, 3, 3, 3, 9, 9, 9, 9, 15, 15, 15, 15, 45, 45, 45, 45, 1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 15, 15, 15, 15, 3, 3, 3, 3, 9, 9, 9, 9, 15, 15, 15, 15, 45, 45, 45, 45, 9, 9, 9, 9, 27, 27, 27, 27, 45, 45, 45, 45, 135, 135, 135, 135, 27, 27, 27, 27, 81, 81, 81, 81, 135
Offset: 0

Views

Author

Antti Karttunen, Dec 26 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339971(n) = { my(m=1, p=2); while(n>0, p = nextprime(1+p); if(n%2, m *= A000265(p-1)); n >>= 1); (m); };

Formula

If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A057023(e1) * A057023(e2) * ... * A057023(ek).
a(n) = A339821(n) / A000079(A339822(n)).

A339898 a(n) = A019565(2n)-1 mod A000265(phi(A019565(2n))).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 2, 0, 2, 4, 4, 1, 5, 9, 14, 0, 2, 1, 2, 0, 2, 4, 5, 7, 8, 9, 14, 10, 32, 9, 29, 0, 0, 0, 0, 1, 2, 0, 2, 1, 0, 4, 4, 3, 11, 4, 14, 1, 2, 0, 2, 7, 5, 3, 2, 0, 2, 4, 14, 6, 20, 34, 14, 0, 2, 4, 5, 24, 20, 16, 23, 28, 41, 9, 29, 112, 68, 24, 74, 3, 11, 19, 5, 27, 2, 58, 14, 16, 50, 84, 119, 388, 356
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Cf. A339973 (positions of zeros).

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339898(n) = { my(x=A019565(2*n)); ((x-1)%A000265(eulerphi(x))); };

Formula

a(n) = A339809(2*n) modulo A339971(n), where A339971(n) = A053575(A019565(2n)).

A339904 The odd part of {Euler totient function phi applied to the prime shifted n}: a(n) = A000265(A000010(A003961(n))).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 5, 9, 5, 3, 3, 3, 1, 5, 3, 27, 9, 5, 11, 9, 5, 3, 7, 9, 21, 1, 25, 15, 15, 3, 9, 81, 3, 9, 15, 15, 5, 11, 1, 27, 21, 5, 23, 9, 15, 7, 13, 27, 55, 21, 9, 3, 29, 25, 9, 45, 11, 15, 15, 9, 33, 9, 25, 243, 3, 3, 35, 27, 7, 15, 9, 45, 39, 5, 21, 33, 15, 1, 41, 81, 125, 21, 11, 15, 27, 23, 15, 27, 3, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A339904(n) = if(1==n,n,my(f=factor(n)); prod(i=1,#f~,my(q=nextprime(1+f[i,1])); A000265(q-1)*(q^(f[i,2]-1))));
    
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A339903(n) = A000265(eulerphi(A003961(n)));

Formula

Multiplicative with a(p^e) = A000265(q-1) * q^(e-1), where q = A151800(p), the next prime larger than p.
For all squarefree numbers k, a(k) = A339903(k).

A066670 Primes arising in A066669: the only odd prime divisor of phi(A066669(n)).

Original entry on oeis.org

3, 3, 5, 3, 3, 3, 3, 5, 11, 5, 3, 3, 7, 5, 3, 3, 3, 5, 3, 5, 3, 11, 23, 5, 3, 13, 5, 3, 7, 29, 3, 5, 11, 3, 3, 5, 3, 5, 41, 3, 7, 5, 11, 3, 11, 23, 3, 5, 3, 3, 13, 53, 5, 3, 7, 11, 7, 29, 3, 5, 3, 5, 17, 11, 3, 23, 3, 7, 37, 5, 3, 3, 13, 5, 5, 41, 83, 3, 43, 7, 5, 29, 11, 89, 3, 11, 5, 23, 3, 3
Offset: 1

Views

Author

Labos Elemer, Dec 18 2001

Keywords

Examples

			A066669(9) = 23, phi(23) = 2*11, so a(9)=11.
		

Crossrefs

Programs

  • Mathematica
    Select[Array[#/2^IntegerExponent[#, 2] &@ EulerPhi@ # &, 200], PrimeQ]  (* Michael De Vlieger, Dec 08 2018 *)
  • PARI
    lista(nn) = {for (n=1, nn, en=eulerphi(n); if (isprime(p=en>>valuation(en, 2)), print1(p, ", ")); ); } \\ Michel Marcus, Dec 08 2018

Formula

From Amiram Eldar, Jul 18 2024: (Start)
a(n) = A053575(A066669(n)).
a(n) = A000265(A000010(A066669(n))) = A006530(A000010(A066669(n))). (End)

A227946 Smallest m such that the number of iterations of "take odd part of phi" to reach 1 from m (A227944) is n.

Original entry on oeis.org

1, 2, 7, 19, 47, 163, 487, 1307, 2879, 19683, 39367, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 86093443, 258280327, 688747547, 3486784401, 10460353203
Offset: 0

Views

Author

Max Alekseyev, Oct 03 2013

Keywords

Comments

The odd part of a number is its largest odd divisor (A000265), phi is Euler's totient function (A000010). - Alonso del Arte, Oct 13 2013

Examples

			a(1) = 2 because just one step is needed to reach 1 from 2, since phi(2) = 1. The numbers 3, 4, 5 and 6 also take one step.
a(2) = 7 because two steps are needed to reach 1 from 7: phi(7) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1. The numbers from 8 to 18 take one or two steps to reach 1.
a(3) = 19 because three steps are needed to reach 1 from 19: phi(19) = 18, the odd part of which is 9, and phi(9) = 6, the odd part of which is 3, and phi(3) = 2, the odd part of which is 1.
		

Crossrefs

A variant of A049117. - R. J. Mathar, Oct 06 2013

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a227946 = (+ 1) . fromJust . (`elemIndex` a227944_list)
    -- Reinhard Zumkeller, Nov 10 2013

Formula

a(n) = smallest m such that A227944(m)=n.

Extensions

a(15) through a(21) copied over from A049117 by Max Alekseyev, Oct 13 2013

A339899 a(n) = gcd(A019565(2n)-1, A000265(phi(A019565(2n)))).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 15, 1, 1, 1, 3, 5, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 3, 1, 3, 1, 1, 1, 27, 1, 1, 1, 1, 5, 3, 1, 1, 1, 81, 1, 1, 1, 3, 1, 1, 1, 9, 1, 3, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n>>valuation(n,2));
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A339899(n) = { my(x=A019565(2*n)); gcd((x-1),A000265(eulerphi(x))); };

Formula

a(n) = gcd(A339809(2*n), A339971(n)), where A339971(n) = A053575(A019565(2n)).
a(n) = gcd(A339971(n), A339898(n)).
a(n) = A339971(n) / A339901(n).
a(n) = A000265(A049559(A019565(2*n))).

A193453 Number of odd divisors of phi(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 4, 1, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 4, 2, 2, 2, 2, 1, 4, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 1, 4, 4, 3, 1, 2, 2, 4, 1, 2, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 1, 4, 2, 2, 2, 1, 4, 2, 2, 2, 2, 3, 2, 4, 2, 3, 1, 2, 4, 4, 2, 3, 1, 4, 2, 2
Offset: 1

Views

Author

Michel Lagneau, Jul 26 2011

Keywords

Comments

phi(n) : A000010 is the Euler totient function. This sequence equals A193169 (n) for n < 63.

Examples

			a(63) = 3 because phi(63) = 36 with 3 odd divisors {1, 3, 9}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[EulerPhi[n]]}, Count[OddQ[d], True]]; Table[f[n], {n, 80}]
  • PARI
    A193453(n) = sumdiv(eulerphi(n), d, d%2); \\ Antti Karttunen, Dec 04 2017

Formula

a(n) = A001227(A000010(n)) = A000005(A053575(n)). - Antti Karttunen, Dec 04 2017

Extensions

More terms from Antti Karttunen, Dec 04 2017
Previous Showing 11-20 of 26 results. Next