cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A208242 Perfect powers y^q with y > 1 and q > 1 which are Brazilian repunits with three or more digits in some base.

Original entry on oeis.org

121, 343, 400
Offset: 1

Views

Author

Bernard Schott, Jan 11 2013

Keywords

Comments

These three numbers are the only known solutions y^q of the Nagell-Ljunggren equation (b^m-1)/(b-1) = y^q with y > 1, q > 1, b > 1, m > 2. Yann Bugeaud and Maurice Mignotte propose two alternative conjectures:
A) The Nagell-Ljunggren equation has only these three solutions.
Considering the current state of our knowledge, this conjecture seems too ambitious, while the next one seems more reasonable.
B) The Nagell-Ljunggren equation has only a finite number of solutions.
This last conjecture is true if the abc conjecture is true (see article Bugeaud-Mignotte in link, p. 148).
Consequence: 121 is the only known square of prime which is Brazilian.
There are no other solutions for some base b < 10000.
Some theorems and results about this equation:
With the exception of the 3 known solutions,
1) for q = 2, there are no other solutions than 11^2 and 20^2,
2) there is no other solution if 3 divides m than 7^3,
3) there is no other solution if 4 divides m than 20^2. - Bernard Schott, Apr 29 2019
From David A. Corneth, Apr 29 2019: (Start)
Intersection of A001597 and A053696.
a(4) > 10^25 if it exists using constraints above.
In the Nagell-Ljunggren equation, we need b > 2. If b = 2, we get y^q = 2^m - 1 which by Catalan's conjecture has no solutions (see A001597). (End)

Examples

			121 = 11^2 =  (3^5 - 1)/ (3 - 1) = 11111_3.
343 =  7^3 = (18^3 - 1)/(18 - 1) =   111_18.
400 = 20^2 =  (7^4 - 1)/ (7 - 1) =  1111_7.
		

Crossrefs

Cf. A001597, A053696, A220571 (Brazilian composites), A307745 (similar but with digits > 1).

Programs

  • PARI
    is(n) = if(!ispower(n), return(0)); for(b=2, n-1, my(d=digits(n, b)); if(#d > 2 && vecmin(d)==1 && vecmax(d)==1, return(1))); 0 \\ Felix Fröhlich, Apr 29 2019

Extensions

Small edits to the name by Bernard Schott, Apr 30 2019

A090503 Number of hyperplanes in a finite projective space (of some dimension d over some finite field of order q).

Original entry on oeis.org

7, 13, 15, 21, 31, 40, 57, 63, 73, 85, 91, 121, 127, 133, 156, 183, 255, 273, 307, 341, 364, 381, 400, 511, 553, 585, 651, 757, 781, 820, 871, 993, 1023, 1057, 1093, 1365, 1407, 1464, 1723, 1893, 2047, 2257, 2380, 2451, 2801, 2863, 3280, 3541, 3783, 3906, 4095, 4161, 4369, 4557, 4681, 5113, 5220, 5403, 5461, 6321, 6643, 6973
Offset: 1

Views

Author

Olivier Giraud (olivier.giraud(AT)bristol.ac.uk), Feb 01 2004

Keywords

Comments

The number of tiles building the known pairs of Euclidean isospectral billiards are 7, 13, 15, 21, ... (see Refs Okada et al. and Buser et al.).
Subsequence of A053696. - Hans Havermann, Nov 21 2013

References

  • T. Tsuzuki, Finite groups and finite geometries, Cambridge University Press, 1982, p. 73.

Crossrefs

Programs

  • Haskell
    a090503 n = a090503_list !! (n-1)
    a090503_list = f [1..] where
       f (x:xs) = g $ tail a000961_list where
         g (q:pps) = h 0 $ map ((`div` (q - 1)) . subtract 1) $
                               iterate (* q) (q ^ 3) where
           h i (qy:ppys) | qy > x    = if i == 0 then f xs else g pps
                         | qy < x    = h 1 ppys
                         | otherwise = x : f xs
    -- Reinhard Zumkeller, Nov 26 2013
  • Mathematica
    isA090503[n_] := Module[{f = FactorInteger[n-1]}, For[i = 1, i <= Length[f], i++, For[j = 1, j <= f[[i, 2]], j++, q = f[[i, 1]]^j; If[q == n-1, Continue[]]; If[n*(q-1)+1 == q^IntegerExponent[n*(q-1)+1, q], Return[True]]]]; False]; Reap[For[n = 2, n <= 10^5, n++, If[isA090503[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Nov 21 2013, translated and adapted from Max Alekseyev's program *)
  • PARI
    isA090503(n) = my(f,q); f=factor(n-1); for(i=1,matsize(f)[1], for(j=1,f[i,2], q=f[i,1]^j; if(q==n-1,next); if( n*(q-1)+1 == q^valuation(n*(q-1)+1,q), return(q)); )); 0 /* Max Alekseyev, Nov 20 2013 */
    

Formula

Numbers of the form (q^(d+1)-1)/(q-1), d>=2, q=p^m with m>=1 and p prime.

Extensions

Missing terms provided by Jean-François Alcover and Wouter Meeussen; edited by M. F. Hasler, Nov 20 2013
PARI program and further terms in a b-file added by Max Alekseyev, Nov 20 2013

A125598 a(n) = ((n+1)^(n-1) - 1)/n.

Original entry on oeis.org

0, 1, 5, 31, 259, 2801, 37449, 597871, 11111111, 235794769, 5628851293, 149346699503, 4361070182715, 139013933454241, 4803839602528529, 178901440719363487, 7143501829211426575, 304465936543600121441
Offset: 1

Views

Author

Alexander Adamchuk, Nov 26 2006

Keywords

Comments

Odd prime p divides a(p-2).
a(n) is prime for n = {3,4,6,74, ...}; prime terms are {5, 31, 2801, ...}.
a(n) is the (n-1)-th generalized repunit in base (n+1). For example, a(5) = 259 which is 1111 in base 6. - Mathew Englander, Oct 20 2020

Crossrefs

Cf. A000272 (n^(n-2)), A125599.
Cf. other sequences of generalized repunits, such as A125118, A053696, A055129, A060072, A031973, A173468, A023037, A119598, A085104, and A162861.

Programs

  • Magma
    [((n+1)^(n-1) -1)/n: n in [1..25]]; // G. C. Greubel, Aug 15 2022
  • Mathematica
    Table[((n+1)^(n-1)-1)/n, {n,25}]
  • Sage
    [gaussian_binomial(n,1,n+2) for n in range(0,18)] # Zerinvary Lajos, May 31 2009
    

Formula

a(n) = ((n+1)^(n-1) - 1)/n.
a(n) = (A000272(n+1) - 1)/n.
a(2k-1)/(2k+1) = A125599(k) for k>0.
From Mathew Englander, Dec 17 2020: (Start)
a(n) = (A060072(n+1) - A083069(n-1))/2.
For n > 1, a(n) = Sum_{k=0..n-2} (n+1)^k.
For n > 1, a(n) = Sum_{j=0..n-2} n^j*C(n-1,j+1). (End)

A325658 Brazilian composites of the form 1 + b + b^2 + b^3 + ... + b^k, b > 1, k > 1.

Original entry on oeis.org

15, 21, 40, 57, 63, 85, 91, 111, 121, 133, 156, 183, 255, 259, 273, 341, 343, 364, 381, 400, 507, 511, 553, 585, 651, 703, 781, 813, 820, 871, 931, 993, 1023, 1057, 1111, 1191, 1261, 1333, 1365, 1407, 1464, 1555, 1561, 1641, 1807, 1885, 1893, 1981, 2047, 2071, 2163, 2257, 2353
Offset: 1

Views

Author

Bernard Schott, May 12 2019

Keywords

Comments

Composites that are repunits in base b >= 2 with three or more digits. If the Goormaghtigh conjecture is true, there are no composite numbers which can be represented as a string of three or more 1's in a base >= 2 in more than one way (A119598).
Only three known perfect powers belong to this sequence: 121, 343 and 400 (A208242).
Except for 121, each term of this sequence have also at least one Brazilian representation with only 2 digits.

Examples

			121 = (11111)_3, 133 = (111)_11 = (77)_18.
		

Crossrefs

Complement of A085104 with respect to A053696.
Intersection of A053696 and A220571.

Programs

  • Maple
    N:= 3000:
    Res:= NULL:
    for m from 2 while 1+m+m^2 <= N do
      for k from 2 do
        v:= (m^(k+1)-1)/(m-1);
        if v > N then break fi;
        if not isprime(v) then  Res:= Res, v fi
    od od:
    sort(convert({Res},list)); # Robert Israel, May 13 2019
  • PARI
    lista(nn) = {forcomposite(n=1, nn, for(b=2, sqrtint(n), my(d=digits(n, b), sd=Set(d)); if ((#d >= 3) && (#sd == 1) && (sd[1] == 1), print1(n, ", "); break);););} \\ Michel Marcus, May 18 2019

A376298 Numbers which are the sum of at least three successive terms of a geometric progression.

Original entry on oeis.org

7, 13, 14, 15, 21, 26, 28, 30, 31, 35, 39, 40, 42, 43, 45, 49, 52, 56, 57, 60, 62, 63, 65, 70, 73, 75, 77, 78, 80, 84, 85, 86, 90, 91, 93, 98, 104, 105, 111, 112, 114, 117, 119, 120, 121, 124, 126, 127, 129, 130, 133, 135, 140, 143, 146, 147, 150, 154, 155, 156, 157
Offset: 1

Views

Author

Andrew Howroyd, Sep 19 2024

Keywords

Comments

Multiples of terms in A053696.
Numbers of the form m*(b^n-1)/(b-1) for n > 2 and b > 1, m > 0.

Examples

			7 is a term because 7 = 1 + 2 + 4.
13 is a term because 13 = 1 + 3 + 9.
14 is a term because 14 = 2 + 4 + 8.
15 is a term because 15 = 1 + 2 + 4 + 8.
		

Crossrefs

Programs

  • PARI
    B(k,lim)={vector(logint(lim*(k-1)+1,k)-2, i, (k^(i+2) - 1)/(k-1))}
    upto(lim=200)={my(v=concat(vector(sqrtint(lim)-1, k, B(k+1,lim)))); Set(concat(vector(#v, i, my(t=v[i]); t*[1..lim\t])))}

A275766 a(n) = (5^(2*(n + 1)) - 1)/4.

Original entry on oeis.org

156, 3906, 97656, 2441406, 61035156, 1525878906, 38146972656, 953674316406, 23841857910156, 596046447753906, 14901161193847656, 372529029846191406, 9313225746154785156, 232830643653869628906, 5820766091346740722656, 145519152283668518066406
Offset: 1

Views

Author

Gionata Neri, Aug 07 2016

Keywords

Comments

It seems that these terms are the only numbers n such that n and n + 1 are in A053696.

Examples

			3906 written in base 5 is 111111 and 3907 written in base 62 is 111.
		

Crossrefs

Programs

  • Mathematica
    Table[(5^(2 (n + 1)) - 1)/4, {n, 16}] (* or *)
    Rest@ CoefficientList[Series[6 x (26 - 25 x)/((1 - x) (1 - 25 x)), {x, 0, 16}], x] (* Michael De Vlieger, Aug 28 2016 *)
  • PARI
    Vec(6*x*(26-25*x)/((1-x)*(1-25*x)) + O(x^20)) \\ Colin Barker, Aug 24 2016
    
  • PARI
    a(n) = 5^(2*n+2)\4 \\ Charles R Greathouse IV, Aug 28 2016

Formula

a(n) = ((A125831(n+1))^3 - 1)/(A125831(n+1) - 1) - 1.
a(n) = A003463(2*(n+1)).
a(n) = 26*a(n-1) - 25*a(n-2), a(1) = 156, a(2) = 3906.
G.f.: 6*x*(26-25*x) / ((1-x)*(1-25*x)). - Colin Barker, Aug 24 2016

A282090 Totient numbers (A002202) of the form 1 + k + k^2 + k^3 +...+ k^i (i > 1, k > 1).

Original entry on oeis.org

40, 156, 400, 820, 1464, 2380, 3280, 3616, 3906, 5220, 7240, 9724, 12720, 19608, 20440, 25260, 30784, 37060, 60880, 66430, 70644, 81400, 93196, 97656, 106080, 120100, 135304, 151740, 169456, 177156, 188500, 254080, 265720, 278916, 333340, 363024, 394420, 427576, 462540, 499360
Offset: 1

Views

Author

Altug Alkan, Feb 06 2017

Keywords

Comments

Totient numbers of the form (k^(i+1) - 1)/(k - 1) where k and i are both odd numbers that are greater than 1.

Examples

			40 is a term because 1 + 3 + 9 + 27 = 40 is a totient number.
		

Crossrefs

Intersection of A002202 and A053696.
Cf. A281962.

Programs

  • PARI
    list(lim)=my(v=List(), e, t); for(b=2, sqrt(lim), e=3; while((t=(b^e-1)/(b-1))<=lim, if(istotient(t),listput(v, t)); e++)); vecsort(Vec(v), , 8) \\ Ray Chandler, Feb 08 2017

Extensions

Terms confirmed by Ray Chandler, Feb 08 2017

A290969 The least positive integer that is a repdigit with length > 2 in exactly n bases.

Original entry on oeis.org

1, 7, 31, 32767, 4095, 435356467, 16777215, 68719476735, 281474976710655
Offset: 0

Views

Author

Bernard Schott, Aug 16 2017

Keywords

Comments

a(10) <= 1152921504606846975 = 2^60 - 1.
a(7) and following terms > 3*10^9. - Giovanni Resta, Aug 16 2017
a(7) <= 2^36-1 and a(8) <= 2^48-1. - Michel Marcus, Aug 17 2017
In fact, we have equality in both cases. - Rémy Sigrist, Aug 21 2017
Except for a(5) = (6^12 - 1) / 5, all the numbers in the data through a(8) are Mersenne numbers A000225. - Bernard Schott, Aug 27 2017

Examples

			a(1) = 7 = 111_2.
a(2) = 31 = 11111_2 = 111_5.
a(3) = 32767 = (R_15)_2 = 77777_8 = (31,31,31)_32.
		

Crossrefs

Extensions

a(7) from Rémy Sigrist, Aug 19 2017
a(8) from Rémy Sigrist, Aug 21 2017

A325659 Smallest Brazilian composite in base n >= 2 which can be represented as a string of three or more 1's in this base.

Original entry on oeis.org

15, 40, 21, 156, 259, 57, 585, 91, 111, 133, 1885, 183, 2955, 3616, 273, 5220, 343, 381, 8421, 9724, 507, 553, 14425, 651, 703, 20440, 813, 871, 931, 993, 1057, 37060, 1191, 1261, 1333, 1407, 56355, 1561, 1641, 70644, 1807, 1893, 1981, 2071, 2163, 2257, 2353, 2451, 127551
Offset: 2

Views

Author

Bernard Schott, May 12 2019

Keywords

Comments

Also the smallest Brazilian composite of the form (n^k - 1)/(n - 1) with k > 2.
For Mersenne numbers = (11...11)_2 = 2^k-1 in A000225, there is a smaller integer which is Brazilian prime: 7, so 7 is the first term of A285642 and another one is the smaller composite 15, so 15 is the first term of this sequence.
For numbers (11...11)_3 = (3^k-1)/2 in A003462, there is also a smaller integer which is Brazilian prime:13, so 13 is the second term of A285642 and another one is the smaller Brazilian composite: 40, so 40 is the second term of this sequence.
For numbers like (11...11)_4 = (4^k-1)/3, the terms are respectively 0 in A285642 because there is no Brazilian prime of this type and 21 for composite numbers of this sequence, and so on.

Examples

			15 = (1111)_2, 40 = (1111)_3, 21 = (111)_4, 156 = (1111)_5.
		

Crossrefs

Subsequence of A053696, A220571, A325658.
Cf. A285642 (same with Brazilian primes).

Programs

  • PARI
    a(n) = {my(k=4, x); while (isprime(x=(n^(k-1)-1)/(n-1)), k++); x;} \\ Michel Marcus, May 17 2019

Extensions

More terms from Michel Marcus, May 17 2019

A326775 For any n >= 0, let b >= 2 be the smallest base where n has all digits equal, say to d; a(n) = d.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 3, 1, 4, 3, 2, 5, 4, 1, 2, 3, 1, 1, 2, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 4, 1, 2, 1, 6, 1, 2, 1, 4, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 5, 4, 7, 6, 1, 2, 3, 2, 1, 7, 1, 2
Offset: 0

Views

Author

Rémy Sigrist, Jul 28 2019

Keywords

Comments

A059711 gives base b.
From Bernard Schott, Aug 17 2019: (Start)
a(n) = 1 iff n is A220570, then n = 11_(n-1) or, n is in A053696, then n = 11..11_b for some base b.
a(n) = 2 if n = 2 * p, p prime >= 5.
a(n) = 3 if n = 3 * p, p prime >= 11.
There are k = 2 equal digits in the representation of n in the corresponding base b, except when n is a term of A167782, in which case the number k of equal digits is >= 3. (End)
n = (b^k - 1)/(b - 1) * a(n) so a(n) | n for n > 0. Furthermore a(n) <= sqrt(n). - David A. Corneth, Aug 21 2019
If b is the smallest base such that n=d*b^k+...+d*b^0 (A059711) (d=a(n) is the repdigit) then n mod b = (d*b^k+...+d*b^0) mod b = (d*b^k+...+d*b^1) mod b + (d*b^0) mod b = 0 + (d*1) mod b. Since d is less than the base we end up with the formula n mod b = d. - Jon Maiga, May 31 2021

Examples

			For n = 45:
- we have:
     b  45 in base b  Repdigit ?
     -  ------------  ----------
     2  101101        no
     3  1200          no
     4  231           no
     5  140           no
     6  113           no
     7  63            no
     8  55            yes, with d = 5
- hence a(45) = 5.
		

Crossrefs

Programs

  • PARI
    a(n) = for (b=2, oo, if (#Set(digits(n,b))<=1, return (n%b)))
    
  • Python
    # with library / without (faster for large n)
    from sympy.ntheory import digits
    def is_repdigit(n, b): return len(set(digits(n, b)[1:])) == 1
    def is_repdigit(n, b):
      if n < b: return True
      n, r = divmod(n, b)
      onlyd = r
      while n > b:
        n, r = divmod(n, b)
        if r != onlyd: return False
      return n == onlyd
    def a(n):
      for b in range(2, n+3):
        if is_repdigit(n, b): return n%b
    print([a(n) for n in range(87)]) # Michael S. Branicky, May 31 2021

Formula

n is a multiple of a(n).
a(n) = n mod A059711(n). - Jon Maiga, May 31 2021
Previous Showing 11-20 of 20 results.