cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A348461 Size of largest bipartite biregular Moore graph of diameter 4 and degrees n and n.

Original entry on oeis.org

8, 30, 80, 170, 312
Offset: 2

Views

Author

N. J. A. Sloane, Oct 31 2021

Keywords

Comments

a(7) >= 516, a(8) = 800, a(9) = 1170, a(10) = 1640.

Crossrefs

Formula

Empirical observation: For the terms a(2)-a(6) and a(8)-a(10) a(n) = 2*(A027444(n-1) + 1). It is unknown whether this is also valid for n = 7 and n > 10. - Hugo Pfoertner, Oct 31 2021
Is this the same as 2*A053698(n-1)? If not, where is the first place these sequences differ? - Omar E. Pol, Oct 31 2021
a(n) <= 2*A053698(n-1) (the Moore bound). - Pontus von Brömssen, Oct 31 2021

A066792 a(n) = phi(n^3 + n^2 + n + 1).

Original entry on oeis.org

1, 2, 8, 16, 64, 48, 216, 160, 288, 320, 1000, 480, 1344, 768, 1568, 1792, 4096, 1344, 4320, 2880, 4800, 3840, 8448, 3328, 11520, 7488, 12168, 6912, 17472, 6720, 24960, 13824, 16000, 13824, 25344, 14688, 46656, 19584, 26112, 24320, 64000, 19488
Offset: 0

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

Crossrefs

Cf. A000010 (phi), A053698, A243379.

Programs

  • Mathematica
    Prepend[EulerPhi[Total[#^Range[0,3]]]&/@Range[45],1]  (* Harvey P. Dale, Feb 19 2011 *)
  • PARI
    a(n) = eulerphi(n^3 + n^2 + n + 1); \\ Harry J. Smith, Mar 27 2010

Formula

a(n) = A000010(A053698(n)). - Michel Marcus, Sep 06 2022
Sum_{k=1..n} a(k) = c * n^4 + O((n*log(n))^3), where c = (3/16) * Product_{primes p == 1 (mod 4)} (1 - 3/p^2) * Product_{primes p == 3 (mod 4)} (1 - 1/p^2) = 0.13549316168... . - Amiram Eldar, Dec 09 2024

A095797 Four-column array read by rows: T(n,k) for k=0..3 is the k-th component of the vector obtained by multiplying the n-th power of the 4 X 4 matrix (1,1,1,1; 7,3,1,0; 12,2,0,0; 6,0,0,0) and the vector (1,1,1,1).

Original entry on oeis.org

1, 1, 1, 1, 4, 11, 14, 6, 35, 75, 70, 24, 204, 540, 570, 210, 1524, 3618, 3528, 1224, 9894, 25050, 25524, 9144, 69612, 169932, 168828, 59364, 467736, 1165908, 1175208, 417672, 3226524, 7947084, 7944648, 2806416, 21924672, 54371568, 54612456, 19359144, 150267840, 371199864
Offset: 0

Views

Author

Gary W. Adamson, Jun 06 2004

Keywords

Comments

(n+1)-st set of 4 terms = leftmost finite differences of sequences generated from 3rd degree polynomials having n-th row coefficients, (given n = 1,2,3...) For example, first row is (1 1 1 1) with a corresponding polynomial x^3 + x^2 + x + 1. (f(x),x = 1,2,3...) = 4, 15, 40, 85, 156...Leftmost term of the sequence = 4, with finite difference rows: 11, 25, 45, 71...; 14, 20, 26, 32...; and 6, 6, 6, 6. Thus leftmost terms of the sequence 4, 15, 40...and the finite difference rows are (4 11 14 6) which is the second row.
The matrix generator is discussed in A028246, while 2nd degree polynomial examples are A091140, A091141 and A091140. The first degree case is A095795.

Examples

			3rd set of 4 terms = (35, 75, 70, 24) since M^2 * [1 1 1 1] = [35 75 70 24].
Array begins:
     1,    1,    1,   1;
     4,   11,   14,   6;
    35,   75,   70,  24;
   204,  540,  570, 210;
  1524, 3618, 3528,1224;
  9894,25050,25524,9144;
		

Crossrefs

Programs

  • Maple
    M := Matrix(4,4,[1,1,1,1,7,3,1,0,12,2,0,0,6,0,0,0]) ;
    v := Vector(4,[1,1,1,1]) ;
    for i from 0 to 20 do
            Mpr := (M ^ i).v ;
            for j from 1 to 4 do
                    printf("%d,", Mpr[j]) ;
            end do;
    end do; # R. J. Mathar, Jun 20 2011
  • Mathematica
    LinearRecurrence[{0,0,0,4,0,0,0,24,0,0,0,-30,0,0,0,-12},{1,1,1,1,4,11,14,6,35,75,70,24,204,540,570,210},50] (* Harvey P. Dale, Feb 08 2013 *)
  • PARI
    Vec((1+x+x^2+x^3+7*x^5+10*x^6+2*x^7-5*x^8+7*x^9-10*x^10-2*x^12 +6*x^13-16*x^14-24*x^11) / (1-4*x^4-24*x^8+30*x^12+12*x^16)+O(x^99)) \\ Charles R Greathouse IV, Jun 21 2011

Formula

G.f.: ( 1 +x +x^2 +x^3 +7*x^5 +10*x^6 +2*x^7 -5*x^8 +7*x^9 -10*x^10 -2*x^12 +6*x^13 -16*x^14 -24*x^11 ) / ( 1-4*x^4-24*x^8+30*x^12+12*x^16 ). - R. J. Mathar, Jun 20 2011
a(n) = +4*a(n-4) +24*a(n-8) -30*a(n-12) -12*a(n-16).

Extensions

Name added by R. J. Mathar, several entries corrected by Charles R Greathouse IV, Jun 21 2011

A129801 Triangle read by rows in which row m (m>=0) gives the numbers 2*m*n + 1 for n = 0, ..., m.

Original entry on oeis.org

1, 1, 3, 1, 5, 9, 1, 7, 13, 19, 1, 9, 17, 25, 33, 1, 11, 21, 31, 41, 51, 1, 13, 25, 37, 49, 61, 73, 1, 15, 29, 43, 57, 71, 85, 99, 1, 17, 33, 49, 65, 81, 97, 113, 129, 1, 19, 37, 55, 73, 91, 109, 127, 145, 163, 1, 21, 41, 61, 81, 101, 121, 141, 161, 181, 201
Offset: 1

Views

Author

Roger L. Bagula, May 18 2007

Keywords

Comments

Row sums are given by A053698 = n^3 + n^2 + n + 1.

Examples

			1; 1,3; 1,5,9; 1,7,13,19; 1,9,17,25,33; ...
		

Crossrefs

Cf. A053698.

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 20 2007

A176071 Numbers of the form 2^k + k + 1 that are the product of two distinct primes.

Original entry on oeis.org

21, 38, 265, 4109, 65553, 262163, 1048597, 67108891, 274877906983, 4503599627370549, 73786976294838206531, 75557863725914323419213, 302231454903657293676623, 5192296858534827628530496329220209, 10889035741470030830827987437816582766726, 95780971304118053647396689196894323976171195136475313
Offset: 1

Views

Author

Keywords

Examples

			21 = 3 * 7 = 2^4 + 4 + 1
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1};Select[Array[2^#+#+1&,140,0],f[ # ]&]
    Select[Table[2^k+k+1,{k,0,200}],PrimeNu[#]==PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 11 2023 *)
  • PARI
    is(n) = my(f = factor(n), e = logint(n, 2)); f[,2] == [1, 1]~ && n == 1<David A. Corneth, May 27 2023

Extensions

Name corrected by David A. Corneth, May 27 2023
Previous Showing 31-35 of 35 results.