cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A350322 Abelian orders m for which there exist exactly 2 groups of order m.

Original entry on oeis.org

4, 9, 25, 45, 49, 99, 121, 153, 169, 175, 207, 245, 261, 289, 325, 361, 369, 423, 425, 475, 477, 529, 531, 539, 575, 637, 639, 725, 747, 765, 801, 833, 841, 845, 847, 909, 925, 931, 961, 963, 1017, 1035, 1075, 1127, 1175, 1179, 1233, 1305, 1325, 1341, 1369, 1445, 1475
Offset: 1

Views

Author

Jianing Song, Dec 25 2021

Keywords

Comments

Abelian orders of the form p^2 * q_1 * q_2 * ... * q_s, where p, q_1, q_2, ..., q_s are distinct primes such that p^2 !== 1 (mod q_j), q_i !== 1 (mod p_j), q_i !== 1 (mod q_j) for i != j. In this case there are 2^r groups of order m.
Note that the smallest abelian order with precisely 2^n groups must be the square of a squarefree number.
Except for a(1) = 4, all terms are odd. The terms that are divisible by 3 are of the form 9 * q_1 * q_2 * ... * q_s, where q_i are distinct primes congruent to 5 modulo 6, q_i !== 1 (mod q_j) for i != j.

Examples

			For primes p, p^2 is a term since the 2 groups of that order are C_{p^2} and C_p X C_p.
For primes p, q, if p^2 !== 1 (mod q) and q !== 1 (mod p), then p^2*q is a term since the 2 groups of that order are C_{p^2*q} and C_p X C_{p*q}.
		

Crossrefs

Equals A060687 INTERSECT A051532 = A054395 INTERSECT A051532 = A054395 INTERSECT A060687 = A054395 INTERSECT A013929.
Equals A350152 \ A350323.
Equals A054395 \ A350586.
Subsequence of A350152.
A001248 and A350332 are subsequences.

Programs

  • PARI
    isA054395(n) = {
      my(p=gcd(n, eulerphi(n)), f);
      if (!isprime(p), return(0));
      if (n%p^2 == 0, return(1 == gcd(p+1, n)));
      f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k, 1]%p==1);
    } \\ Gheorghe Coserea's program for A054395
    isA350322(n) = isA054395(n) && (bigomega(n)-omega(n)==1)
    
  • PARI
    isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532
    isA350322(n) = isA051532(n) && (bigomega(n)-omega(n)==1)
    
  • Python
    def is_ok(m):
        f = factorint(m)
        return (
            sum(f.values()) == len(f) + 1 and
            all((q - 1) % p > 0 for p in f for q in f) and
            (m := next(p for p, e in f.items() if e == 2) ** 2 - 1) and
            all(m % q > 0 for q in f)) # David Radcliffe, Jul 30 2025

A350332 Numbers p^2*q, p < q odd primes such that p does not divide q-1.

Original entry on oeis.org

45, 99, 153, 175, 207, 261, 325, 369, 423, 425, 475, 477, 531, 539, 575, 637, 639, 725, 747, 801, 833, 909, 925, 931, 963, 1017, 1075, 1127, 1175, 1179, 1233, 1325, 1341, 1475, 1503, 1519, 1557, 1573, 1611, 1675, 1719, 1773, 1813, 1825, 1975, 2009, 2043, 2057
Offset: 1

Views

Author

Bernard Schott, Dec 25 2021

Keywords

Comments

For these terms m, there are precisely 2 groups of order m, so this is a subsequence of A054395.
The 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.

Examples

			99 = 3^2 * 11, 3 and 11 are odd and 3 does not divide 11-1 = 10, hence 99 is a term.
175 = 5^2 * 7, 5 and 7 are odd and 5 does not divide 7-1 = 6, hence 115 is another term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Subsequence of A051532, A054395, A054753 and of A060687.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && ! Divisible[p[[2]] - 1, p[[1]]]]; Select[Range[2000], q] (* Amiram Eldar, Dec 25 2021 *)
  • PARI
    isok(m) = my(f=factor(m)); if (f[, 2] == [2, 1]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p)); \\ Michel Marcus, Dec 25 2021
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit, 3)[0]
        for p in primerange(3, maxp+1):
            pp = p*p
            for q in primerange(p+1, limit//pp+1):
                if (q-1)%p != 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(2060)) # Michael S. Branicky, Dec 25 2021
    

Extensions

More terms from Michael S. Branicky, Dec 25 2021

A350422 Numbers of the form m = p^2*q for which there exist exactly 2 groups of order m.

Original entry on oeis.org

45, 99, 153, 175, 207, 245, 261, 325, 369, 423, 425, 475, 477, 531, 539, 575, 637, 639, 725, 747, 801, 833, 845, 847, 909, 925, 931, 963, 1017, 1075, 1127, 1175, 1179, 1233, 1325, 1341, 1445, 1475, 1503, 1519, 1557, 1573, 1611, 1675, 1719, 1773, 1813, 1825, 1859, 1975, 2009
Offset: 1

Views

Author

Bernard Schott, Jan 03 2022

Keywords

Comments

Terms come from the union of terms of the form p^2*q with p < q in A350332 and terms of the same form with p > q in A350421, with p, q odd primes.
All terms are odd.
These 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.

Examples

			With p < q: 175 = 5^2 * 7, 5 and 7 are odd primes and 5 does not divide 7-1 = 6, hence 175 is a term (see A350332).
With p > q: 245 = 7^2 * 5, 5 and 7 are odd primes, 5 does not divide 7-1 = 6 and does not divide 7+1 = 8, hence 245 is a term (see A350421).
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Disjoint union of A350332 (pA350421 (p>q).
Intersection of A054395 and A054753.
Subsequence of A051532, A060687 and A350322.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245, A350638.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (e == {1, 2} && ! Or @@ Divisible[p[[2]] + {-1, 1}, p[[1]]]) || (e == {2, 1} && ! Divisible[p[[2]] - 1, p[[1]]])]; Select[Range[1, 2000, 2], q] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    isoka(f) = if (f[, 2] == [2, 1]~, my(p=f[1, 1], q=f[2, 1]); ((q-1) % p)); \\ A350332
    isokb(f) = if (f[, 2] == [1, 2]~, my(p=f[2, 1], q=f[1, 1]); ((p-1) % q) && ((p+1) % q)); \\ A350421
    isok(m) = my(f=factor(m)); isoka(f) || isokb(f); \\ Michel Marcus, Jan 09 2022

A350421 Numbers p^2*q, p > q odd primes such that q does not divide p-1, and q does not divide p+1.

Original entry on oeis.org

245, 845, 847, 1445, 1859, 2023, 2527, 2645, 3179, 3703, 3757, 3971, 4693, 6137, 6727, 6845, 6877, 8993, 9245, 9251, 9583, 10051, 10571, 10933, 11045, 12493, 14045, 14297, 15059, 15463, 15979, 16337, 17797, 18259, 18491, 19343, 19663, 21853, 22103, 22445, 23273
Offset: 1

Views

Author

Bernard Schott, Dec 30 2021

Keywords

Comments

As odd prime q does not divide p-1 and does not divide also p+1, then q >= 5, so p >= 7.
For these terms m, there are precisely 2 groups of order m, so this is a subsequence of A054395.
The 2 groups are abelian; they are C_{p^2*q} and (C_p X C_p) X C_q, where C means cyclic groups of the stated order and the symbol X means direct product.

Examples

			245 = 7^2 * 5, 5 and 7 are odd primes, 5 does not divide 7-1 = 10 and does not divide 7+1 = 8, hence 245 is a term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Equals A350422 \ A350332.
Subsequence of A051532, A054395, A054753, A060687 and A350322.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115, A350245.

Programs

  • Magma
    f:=Factorisation; [n:n in [3..24000 ]|#PrimeDivisors(n) eq 2 and  f(n)[1][1] lt f(n)[2][1] and f(n)[1][2] eq 1 and f(n)[2][2] eq 2  and (f(n)[2][1]-1) mod f(n)[1][1] ne 0 and (f(n)[2][1]+1) mod f(n)[1][1] ne 0]; // Marius A. Burtea, Dec 30 2021
    
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && ! Or @@ Divisible[p[[2]] + {-1, 1}, p[[1]]]]; Select[Range[1, 24000, 2], q] (* Amiram Eldar, Dec 30 2021 *)
  • PARI
    isok(m) = my(f=factor(m)); if (f[, 2] == [1, 2]~, my(p=f[2, 1], q=f[1, 1]); ((p-1) % q) && ((p+1) % q)); \\ Michel Marcus, Dec 30 2021
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
        for p in primerange(3, maxp+1):
            pp = p*p
            for q in primerange(1, min(p, limit//pp+1)):
                if (p-1)%q != 0 and (p+1)%q != 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(24000)) # Michael S. Branicky, Dec 30 2021
    

Extensions

More terms from Marius A. Burtea and Hugo Pfoertner, Dec 30 2021

A350586 Numbers m with exactly 2 groups of order m, where one is abelian and the other is nonabelian.

Original entry on oeis.org

6, 10, 14, 21, 22, 26, 34, 38, 39, 46, 55, 57, 58, 62, 74, 82, 86, 93, 94, 105, 106, 111, 118, 122, 129, 134, 142, 146, 155, 158, 165, 166, 178, 183, 194, 195, 201, 202, 203, 205, 206, 214, 218, 219, 226, 231, 237, 253, 254, 262, 274, 278, 285, 291, 298, 301, 302
Offset: 1

Views

Author

Bernard Schott, Jan 07 2022

Keywords

Comments

Differs from A064899 that is a subsequence: a(20) = 105 while A064899(20) = 106.
When m = 2*p, p odd prime, abelian group is C_{2*p} and nonabelian group is D_{2*p} ~ C_p : C_2.
When m = p*q, p
In both cases, C, D mean cyclic, dihedral groups of the stated order; the symbols ~ and : mean isomorphic to and semidirect product respectively.
A number m is a term iff m is squarefree and m has exactly one pair of prime factors (p, q) such that q == 1 (mod p). - David Radcliffe, Jul 30 2025

Examples

			There is only one group of order 1, 2, 3, 5 and the two groups of order 4 are abelian; hence 6 is the smallest term because the two groups of order 6 are the abelian and cyclic group C_6, while the nonabelian group is the symmetric group S_3 isomorphic to dihedral group D_6.
The smallest odd term is 21, the two corresponding groups are C_21 and semi-direct product C_7 : C_3.
The smallest term of the form p*q*r, p < q < r primes, is 105, the two corresponding groups are C_105 and semi-direct product C_35 : C_3.
		

Crossrefs

Equals A054395 \ A350322.
Subsequence of A060650 and of A005117.

Programs

  • PARI
    is(n,f=factor(n))=my(p=f[,1],s); if(#p && vecmax(f[,2])>1, return(0)); for(i=2,#p, for(j=1,i-1, if(p[i]%p[j]==1 && s++>1, return(0)))); s==1 \\ Charles R Greathouse IV, Jan 08 2022
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=6,lim\1, my(p=n[2][,1],s); for(i=2,#p, for(j=1,i-1, if(p[i]%p[j]==1 && s++>1, next(3)))); if(s==1, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 08 2022
    
  • Python
    from sympy import factorint
    def is_ok(m):
        f = factorint(m)
        if any(e > 1 for e in f.values()): return False # m must be squarefree
        return sum(q % p == 1 for p in f for q in f) == 1 # David Radcliffe, Jul 30 2025

Extensions

More terms from Jinyuan Wang, Jan 08 2022

A215935 Number of ordered pairs of primes (p, q) dividing n for which p^e = 1 mod q, where e is the exponent of p in n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 1, 1, 0, 3, 0, 2, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Author

Keywords

Comments

If n in A056867 then a(n) = 0.

Examples

			12 is divisible by two primes, 2 and 3. The exponent of 2 is 2 and the exponent of 3 is 1. 2^2 = 1 mod 3 and 3^1 = 1 mod 2, so a(12) = 2.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local l; l:= ifactors(n)[2];
           add(add(`if`(irem(i[1]^i[2], j[1])=1, 1, 0), i=l), j=l)
        end:
    seq (a(n), n=1..100);  # Alois P. Heinz, Aug 28 2012
  • Mathematica
    a[n_] := With[{f = FactorInteger[n]}, Sum[ Boole[ Mod[p[[1]]^p[[2]], q[[1]]] == 1], {p, f}, {q, f}]]; Table[a[n], {n, 1, 93}] (* Jean-François Alcover, Sep 03 2012 *)
  • PARI
    a(n)=my(f=factor(n),k=#f~); sum(i=1,k, sum(j=1,k, i!=j && Mod(f[i,1],f[j,1])^f[i,2]==1))

A296026 Numbers n such that there are precisely 2 groups of order n and 4 of order n + 1.

Original entry on oeis.org

62, 129, 153, 169, 237, 245, 274, 278, 285, 289, 314, 369, 386, 417, 425, 429, 497, 529, 555, 597, 637, 645, 669, 715, 813, 889, 914, 926, 955, 961, 969, 1065, 1101, 1131, 1154, 1221, 1227, 1286, 1341, 1369, 1389, 1405, 1435, 1461, 1497, 1505, 1515, 1557, 1569, 1675, 1771
Offset: 1

Author

Muniru A Asiru, Dec 03 2017

Keywords

Examples

			62 is in the sequence since A000001(62) = 2 and A000001(63) = 4.
129 is in the sequence since A000001(129) = 2 and A000001(130) = 4.
425 is in the sequence since A000001(425) = 2 and A000001(426) = 4.
		

Crossrefs

Cf. A000001. Subsequence of A054395.

Programs

  • GAP
    A296026 := Filtered([1..2014],n->[NumberSmallGroups(n), NumberSmallGroups(n+1)]=[2, 4]);
  • Maple
    with(GroupTheory):
    for n from 1 to 10^3 do if [NumGroups(n), NumGroups(n+1)]=[2, 4]  then print(n); fi; od;

Formula

Sequence is { n | A000001(n) = 2, A000001(n+1) = 4 }.

A296025 Numbers n such that there are precisely 2 groups of order n and 3 of order n + 1.

Original entry on oeis.org

74, 362, 866, 2066, 2174, 3974, 4894, 5042, 5914, 6626, 7934, 10334, 10886, 12634, 15122, 16538, 17474, 19238, 20318, 20338, 20666, 21974, 23774, 23882, 24422, 25094, 28922, 31478, 33134, 35138, 36878, 38174, 41018, 41774, 42062, 42134, 46022, 48502
Offset: 1

Author

Muniru A Asiru, Dec 03 2017

Keywords

Examples

			74 is in the sequence since A000001(74) = 2 and A000001(75) = 3.
362 is in the sequence since A000001(362) = 2 and A000001(363) = 3.
7934 is in the sequence since A000001(7934) = 2 and A000001(7935) = 3.
		

Crossrefs

Cf. A000001. Subsequence of A054395.

Programs

  • Maple
    with(GroupTheory): with(numtheory):
    for n from 1 to 10^4 do if [NumGroups(n), NumGroups(n+1)]=[2, 3] then print(n); fi; od;

Formula

Sequence is { n | A000001(n) = 2, A000001(n+1) = 3 }.
Previous Showing 21-28 of 28 results.