cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A292022 a(n) = 4*n*(n^2 + 2).

Original entry on oeis.org

12, 48, 132, 288, 540, 912, 1428, 2112, 2988, 4080, 5412, 7008, 8892, 11088, 13620, 16512, 19788, 23472, 27588, 32160, 37212, 42768, 48852, 55488, 62700, 70512, 78948, 88032, 97788, 108240, 119412, 131328, 144012, 157488, 171780, 186912, 202908, 219792, 237588
Offset: 1

Views

Author

Eric W. Weisstein, Sep 07 2017

Keywords

Comments

For n > 1, Wiener index of the 2n-crossed prism graph.

Crossrefs

Programs

  • Mathematica
    Table[4 n (n^2 + 2), {n, 50}]
    LinearRecurrence[{4, -6, 4, -1}, {12, 48, 132, 288}, 20]
    CoefficientList[Series[(12 (1 + x^2))/(-1 + x)^4, {x, 0, 20}], x]

Formula

a(n) = 4*n*(n^2 + 2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 12*x*(1 + x^2)/(-1 + x)^4.
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: 4*x*(3 + 3*x + x^2)*exp(x).
a(n) = 12*A006527(n) = 4*A054602(n) = 3*A217873(n). (End)

A173044 Product plus sum of five consecutive nonnegative numbers.

Original entry on oeis.org

10, 135, 740, 2545, 6750, 15155, 30280, 55485, 95090, 154495, 240300, 360425, 524230, 742635, 1028240, 1395445, 1860570, 2441975, 3160180, 4037985, 5100590, 6375715, 7893720, 9687725, 11793730, 14250735, 17100860, 20389465, 24165270, 28480475, 33390880, 38956005
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5): n in [0..40]]; // G. C. Greubel, Feb 19 2021
  • Maple
    A173044:= n-> (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5); seq(A173044(n), n=0..40) # G. C. Greubel, Feb 19 2021
  • Mathematica
    a[n_]:= n*(n+1)*(n+2)*(n+3)*(n+4) + n + (n+1)+(n+2)+(n+3)+(n+4);
    Table[a[n],{n,0,5!}]
  • Sage
    [(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) for n in (0..40)] # G. C. Greubel, Feb 19 2021
    

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4) +n +(n+1) +(n+2) +(n+3) +(n+4).
G.f.: 5*(2 +15*x +16*x^2 -14*x^3 +6*x^4 -x^5)/(1-x)^6. - Colin Barker, Jun 25 2012
a(n) = (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) = n^5 +10*n^4 +35*n^3 +50*n^2 +29*n +10. - Bruno Berselli, Jun 25 2012
E.g.f.: (10 +125*x +240*x^2 +120*x^3 +20*x^4 +x^5)*exp(x). - G. C. Greubel, Feb 19 2021

Extensions

Offset corrected by G. C. Greubel, Feb 19 2021

A277625 Nontrivial values of Fibonacci polynomials.

Original entry on oeis.org

2, 3, 5, 8, 10, 12, 13, 17, 21, 26, 29, 33, 34, 37, 50, 55, 65, 70, 72, 82, 89, 101, 109, 122, 135, 144, 145, 169, 170, 197, 226, 228, 233, 257, 290, 305, 325, 357, 360, 362, 377, 401, 408, 442, 485, 528, 530, 577, 610, 626, 677, 701, 730, 747, 785, 842, 901, 962, 985, 987
Offset: 1

Views

Author

Bobby Jacobs, Oct 24 2016

Keywords

Comments

The polynomial FibonacciPolynomial(x, y) satisfies the recurrence FibonacciPolynomial(0, y) = 0, FibonacciPolynomial(1, y) = 1, and FibonacciPolynomial(x, y) = y*FibonacciPolynomial(x-1, y) + FibonacciPolynomial(x-2, y).
Nontrivial means a value FibonacciPolynomial(x, y) with x>=3 and y>=1. For FibonacciPolynomial(0, y) = 0 and FibonacciPolynomial(1, y) = 1 for all y, and any number y can be represented trivially as FibonacciPolynomial(2, y).
5 = FibonacciPolynomial(5, 1) = FibonacciPolynomial(3, 2) is the only known number that can be represented as a nontrivial Fibonacci polynomial in more than one way.
Numbers obtained as A104244(n,A206296(k)), where n >= 1 and k >= 3 (all terms from array A073133 except its two leftmost columns) and then sorted into ascending order, with any possible duplicate (5) removed. - Antti Karttunen, Oct 29 2016

Examples

			12 is in this sequence because FibonacciPolynomial(4, 2) = 12.
		

Crossrefs

Cf. A000045, A000129, A001076, A006190, A052918 (FibonacciPolynomial(x, y) for different values of y).
Cf. A002522, A054602, A085151 (FibonacciPolynomial(x, y) for different values of x).

Programs

  • Mathematica
    Take[Union[Flatten[Table[Fibonacci[x, y], {x, 3, 20}, {y, 50}]]], 60] (* Robert G. Wilson v, Oct 24 2016 *)
  • PARI
    list(lim)=my(v=List()); for(y=1,sqrtint(lim\1-1), my(a=y,b=y^2+1); while(b<=lim, listput(v,b); [a,b]=[b,a+y*b])); Set(v) \\ Charles R Greathouse IV, Oct 30 2016

Formula

FibonacciPolynomial(x, y) with x>=3 and y>=1.
a(n) = n^2 - 2*n^(5/3) - O(n^(3/2)). - Charles R Greathouse IV, Nov 03 2016

Extensions

More terms from Robert G. Wilson v, Oct 24 2016

A325173 Perfect squares of the form a + b^2 + c^3, where a,b,c are consecutive numbers.

Original entry on oeis.org

9, 144, 1089, 5184, 18225, 51984, 127449, 278784, 558009, 1040400, 1830609, 3069504, 4941729, 7683984, 11594025, 17040384, 24472809, 34433424, 47568609, 64641600, 86545809, 114318864, 149157369, 192432384, 245705625, 310746384, 389549169, 484352064, 597655809, 732243600
Offset: 1

Views

Author

Philip Mizzi, Sep 05 2019

Keywords

Examples

			9 = 0 + 1^2 + 2^3. 0,1,2 are consecutive numbers and 9 is a perfect square. Hence, 9 is a member of the sequence.
18225 = 24 + 25^2 + 26^3. 24,25,26 are consecutive numbers and 18225 is a perfect square. Hence 18225 is a member of the sequence.
		

Crossrefs

Intersection of A000290 and A027620.
Cf. A005563 (the indices n that give these squares), A054602.

Programs

  • PARI
    a(n) = n^2*(2 + n^2)^2 \\ David A. Corneth, Sep 11 2019
    
  • PARI
    Vec(9*x*(1 + x)*(1 + 8*x + 22*x^2 + 8*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Sep 11 2019

Formula

a(n) = A000290(A054602(n)). - Michel Marcus, Sep 05 2019
From Colin Barker, Sep 05 2019: (Start)
G.f.: 9*x*(1 + x)*(1 + 8*x + 22*x^2 + 8*x^3 + x^4) / (1 - x)^7.
a(n) = n^2*(2 + n^2)^2.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
E.g.f.: exp(x)*x*(9 + 63*x + 114*x^2 + 69*x^3 + 15*x^4 + x^5). - Conjectured by Stefano Spezia, Sep 05 2019 after Colin Barker
From Chai Wah Wu, Sep 10 2019: (Start)
Above conjectures are true. Proof: k + (k+1)^2 + (k+2)^3 = (k+1)*(k+3)^2 and thus is a perfect square if and only if k+1 = n^2 is a perfect square. This implies that (k+1)*(k+3)^2 = n^2*(n^2+2)^2.
(End)

A329655 Square array read by antidiagonals: T(n,k) is the number of relations between set A with n elements and set B with k elements that are both right unique and left unique.

Original entry on oeis.org

1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 33, 20, 5, 6, 30, 72, 72, 30, 6, 7, 42, 135, 208, 135, 42, 7, 8, 56, 228, 500, 500, 228, 56, 8, 9, 72, 357, 1044, 1545, 1044, 357, 72, 9, 10, 90, 528, 1960, 4050, 4050, 1960, 528, 90, 10, 11, 110, 747, 3392, 9275, 13326, 9275, 3392, 747, 110, 11
Offset: 1

Views

Author

Roy S. Freedman, Nov 18 2019

Keywords

Comments

A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right unique if (a, b1) in R and (a,b2) in R implies b1=b2. A relation R is left unique if (a1,b) in R and (a2,b) in R implies a1=a2.

Examples

			The symmetric array T(n,k) begins:
  1,   2,    3,    4,     5,      6,       7,       8,        9, ...
  2,   6,   12,   20,    30,     42,      56,      72,       90, ...
  3,  12,   33,   72,   135,    228,     357,     528,      747, ...
  4,  20,   72,  208,   500,   1044,    1960,    3392,     5508, ...
  5,  30,  135,  500,  1545,   4050,    9275,   19080,    36045, ...
  6,  42,  228, 1044,  4050,  13326,   37632,   93288,   207774, ...
  7,  56,  357, 1960,  9275,  37632,  130921,  394352,  1047375, ...
  8,  72,  528, 3392, 19080,  93288,  394352, 1441728,  4596552, ...
  9,  90,  747, 5508, 36045, 207774, 1047375, 4596552, 17572113, ...
		

Crossrefs

The diagonal T(n,n) is A097662. T(1,k)=A000027; T(2,k)=A002378; T(3,k)=A054602.

Programs

  • Maple
    T:= (n,k)-> value(Sum(binomial(n,j)*binomial(k, j)*j!, j=1..k)):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] * Binomial[k, j] * j!, {j, 1, k}]; Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
  • MuPAD
    T:=(n,k)->_plus (binomial(n,j)*binomial(k, j)* j! $ j=1..k):

Formula

T(n,k) = Sum_{j=1..k} binomial(n,j)*binomial(k,j)*j!.
T(n,k) = A088699(n,k)-1.

A120566 G.f. satisfies: A(x) = A(A(x)) - x*A(A(A(x))), with A(0)=0.

Original entry on oeis.org

1, 1, 1, 3, 7, 33, 109, 643, 2623, 17929, 85349, 652395, 3517911, 29484193, 176844781, 1605009651, 10575269935, 103033059513, 738834271605, 7676696689275, 59466011617671, 655467253898577, 5451048833933693
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2006

Keywords

Comments

If A(0, x) = x, A(n+1, x) = A( A(n, x)) = A(n, A(x)). Then A(n, x) = x + n*x^2 + n^2*x^3 + (n^3 + 2*n)*x^4 + (n^4 + 6*n^2)*x^5 + ... where [x^4] A(n, x) = A054602(n). - Michael Somos, Jan 22 2012

Examples

			A(x) = x + x^2 + x^3 + 3x^4 + 7x^5 + 33x^6 + 109x^7 + 643x^8 +...
A(A(x)) = x + 2x^2 + 4x^3 + 12x^4 + 40x^5 + 168x^6 + 736x^7 + 3784x^8+..
x*A(A(A(x))) = x^2 + 3x^3 + 9x^4 + 33x^5 + 135x^6 + 627x^7 + 3141x^8+...
		

Programs

  • PARI
    {a(n)=local(A=x+x^2+x*O(x^n));if(n<1,0, for(i=1,n,A=x-subst(A,x,-x)*subst(A,x,A));polcoeff(A,n))}

Formula

G.f. satisfies: A(-A(-x)) = x ; Also: A(x) = x + A(A(x))*series_reversion(A(x)).
Since g.f. satisfies: A(A(x)) = ( x - A(x) )/A(-x), then higher order self-compositions of A(x) reduce into expressions involving A(x) and A(-x). - Paul D. Hanna, Jul 22 2006
Previous Showing 11-16 of 16 results.