A292022
a(n) = 4*n*(n^2 + 2).
Original entry on oeis.org
12, 48, 132, 288, 540, 912, 1428, 2112, 2988, 4080, 5412, 7008, 8892, 11088, 13620, 16512, 19788, 23472, 27588, 32160, 37212, 42768, 48852, 55488, 62700, 70512, 78948, 88032, 97788, 108240, 119412, 131328, 144012, 157488, 171780, 186912, 202908, 219792, 237588
Offset: 1
-
Table[4 n (n^2 + 2), {n, 50}]
LinearRecurrence[{4, -6, 4, -1}, {12, 48, 132, 288}, 20]
CoefficientList[Series[(12 (1 + x^2))/(-1 + x)^4, {x, 0, 20}], x]
A173044
Product plus sum of five consecutive nonnegative numbers.
Original entry on oeis.org
10, 135, 740, 2545, 6750, 15155, 30280, 55485, 95090, 154495, 240300, 360425, 524230, 742635, 1028240, 1395445, 1860570, 2441975, 3160180, 4037985, 5100590, 6375715, 7893720, 9687725, 11793730, 14250735, 17100860, 20389465, 24165270, 28480475, 33390880, 38956005
Offset: 0
-
[(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5): n in [0..40]]; // G. C. Greubel, Feb 19 2021
-
A173044:= n-> (n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5); seq(A173044(n), n=0..40) # G. C. Greubel, Feb 19 2021
-
a[n_]:= n*(n+1)*(n+2)*(n+3)*(n+4) + n + (n+1)+(n+2)+(n+3)+(n+4);
Table[a[n],{n,0,5!}]
-
[(n+2)*(n^4 +8*n^3 +19*n^2 +12*n +5) for n in (0..40)] # G. C. Greubel, Feb 19 2021
A277625
Nontrivial values of Fibonacci polynomials.
Original entry on oeis.org
2, 3, 5, 8, 10, 12, 13, 17, 21, 26, 29, 33, 34, 37, 50, 55, 65, 70, 72, 82, 89, 101, 109, 122, 135, 144, 145, 169, 170, 197, 226, 228, 233, 257, 290, 305, 325, 357, 360, 362, 377, 401, 408, 442, 485, 528, 530, 577, 610, 626, 677, 701, 730, 747, 785, 842, 901, 962, 985, 987
Offset: 1
12 is in this sequence because FibonacciPolynomial(4, 2) = 12.
-
Take[Union[Flatten[Table[Fibonacci[x, y], {x, 3, 20}, {y, 50}]]], 60] (* Robert G. Wilson v, Oct 24 2016 *)
-
list(lim)=my(v=List()); for(y=1,sqrtint(lim\1-1), my(a=y,b=y^2+1); while(b<=lim, listput(v,b); [a,b]=[b,a+y*b])); Set(v) \\ Charles R Greathouse IV, Oct 30 2016
A325173
Perfect squares of the form a + b^2 + c^3, where a,b,c are consecutive numbers.
Original entry on oeis.org
9, 144, 1089, 5184, 18225, 51984, 127449, 278784, 558009, 1040400, 1830609, 3069504, 4941729, 7683984, 11594025, 17040384, 24472809, 34433424, 47568609, 64641600, 86545809, 114318864, 149157369, 192432384, 245705625, 310746384, 389549169, 484352064, 597655809, 732243600
Offset: 1
9 = 0 + 1^2 + 2^3. 0,1,2 are consecutive numbers and 9 is a perfect square. Hence, 9 is a member of the sequence.
18225 = 24 + 25^2 + 26^3. 24,25,26 are consecutive numbers and 18225 is a perfect square. Hence 18225 is a member of the sequence.
-
a(n) = n^2*(2 + n^2)^2 \\ David A. Corneth, Sep 11 2019
-
Vec(9*x*(1 + x)*(1 + 8*x + 22*x^2 + 8*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Sep 11 2019
A329655
Square array read by antidiagonals: T(n,k) is the number of relations between set A with n elements and set B with k elements that are both right unique and left unique.
Original entry on oeis.org
1, 2, 2, 3, 6, 3, 4, 12, 12, 4, 5, 20, 33, 20, 5, 6, 30, 72, 72, 30, 6, 7, 42, 135, 208, 135, 42, 7, 8, 56, 228, 500, 500, 228, 56, 8, 9, 72, 357, 1044, 1545, 1044, 357, 72, 9, 10, 90, 528, 1960, 4050, 4050, 1960, 528, 90, 10, 11, 110, 747, 3392, 9275, 13326, 9275, 3392, 747, 110, 11
Offset: 1
The symmetric array T(n,k) begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, ...
2, 6, 12, 20, 30, 42, 56, 72, 90, ...
3, 12, 33, 72, 135, 228, 357, 528, 747, ...
4, 20, 72, 208, 500, 1044, 1960, 3392, 5508, ...
5, 30, 135, 500, 1545, 4050, 9275, 19080, 36045, ...
6, 42, 228, 1044, 4050, 13326, 37632, 93288, 207774, ...
7, 56, 357, 1960, 9275, 37632, 130921, 394352, 1047375, ...
8, 72, 528, 3392, 19080, 93288, 394352, 1441728, 4596552, ...
9, 90, 747, 5508, 36045, 207774, 1047375, 4596552, 17572113, ...
-
T:= (n,k)-> value(Sum(binomial(n,j)*binomial(k, j)*j!, j=1..k)):
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
T[n_, k_] := Sum[Binomial[n, j] * Binomial[k, j] * j!, {j, 1, k}]; Table[T[n - k + 1, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Nov 25 2019 *)
-
T:=(n,k)->_plus (binomial(n,j)*binomial(k, j)* j! $ j=1..k):
A120566
G.f. satisfies: A(x) = A(A(x)) - x*A(A(A(x))), with A(0)=0.
Original entry on oeis.org
1, 1, 1, 3, 7, 33, 109, 643, 2623, 17929, 85349, 652395, 3517911, 29484193, 176844781, 1605009651, 10575269935, 103033059513, 738834271605, 7676696689275, 59466011617671, 655467253898577, 5451048833933693
Offset: 1
A(x) = x + x^2 + x^3 + 3x^4 + 7x^5 + 33x^6 + 109x^7 + 643x^8 +...
A(A(x)) = x + 2x^2 + 4x^3 + 12x^4 + 40x^5 + 168x^6 + 736x^7 + 3784x^8+..
x*A(A(A(x))) = x^2 + 3x^3 + 9x^4 + 33x^5 + 135x^6 + 627x^7 + 3141x^8+...
-
{a(n)=local(A=x+x^2+x*O(x^n));if(n<1,0, for(i=1,n,A=x-subst(A,x,-x)*subst(A,x,A));polcoeff(A,n))}
Comments