cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A073705 a(n) = Sum_{ d divides n } (n/d)^(2d).

Original entry on oeis.org

1, 5, 10, 33, 26, 182, 50, 577, 811, 1750, 122, 16194, 170, 18982, 74900, 135425, 290, 847127, 362, 2498178, 4901060, 4209430, 530, 78564226, 9766251, 67138102, 387952660, 542674914, 842, 4866184552, 962, 8606778369, 31382832260, 17179953862, 6385992100, 422091411267, 1370, 274878038710
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Comments

a(n) is the number of linear partitions of the linearly ordered set [n] = {1,2,...,n} with blocks of the same size, where each block has two element marked (possibly equal). For instance, for n = 3, we have the following 10 linear partitions (where the marked elements are denoted by a and b, or by X when they coincide):
(X)(X)(X), (ab3), (a2b), (1ab), (ba3), (b2a), (1ba), (X23), (1X3), (12X). - Emanuele Munarini, Feb 03 2014

Examples

			a(10) = (10/1)^(2*1) +(10/2)^(2*2) +(10/5)^(2*5) +(10/10)^(2*10) = 1750 because positive divisors of 10 are 1, 2, 5, 10.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Quotient[n, x = Divisors[n]]^(2*x)], {n, 34}] (* Jayanta Basu, Jul 08 2013 *)
  • Maxima
    a(n):= lsum(d^(2*n/d),d,listify(divisors(n)));
    makelist(a(n),n,1,40); /* Emanuele Munarini , Feb 03 2014 */
  • PARI
    a(n)=sumdiv(n, d, (d)^(2*n/d) );  /* Joerg Arndt, Oct 07 2012 */
    

Formula

G.f.: Sum_{n>=1} -log(1 - (n^2)*x^n)/n = Sum_{n>=1} a(n) x^n/n.
G.f.: Sum_{k>=1} k^2*x^k/(1-k^2*x^k). - Benoit Cloitre, Apr 21 2003

Extensions

Corrected a(14) and inserted missing a(16) by Jayanta Basu, Jul 08 2013

A076717 a(n) = -Sum_{d|n} (-n/d)^d.

Original entry on oeis.org

1, 1, 4, -1, 6, 4, 8, -25, 37, 16, 12, -106, 14, 92, 384, -561, 18, -65, 20, -706, 2552, 1948, 24, -15658, 3151, 8048, 20440, -2570, 30, -33326, 32, -135393, 178512, 130816, 94968, -583219, 38, 523964, 1596560, -2465370, 42, -2521186, 44, -15082, 16364502, 8388124, 48, -78560082, 823593, 23888231
Offset: 1

Views

Author

Vladeta Jovovic, Oct 27 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n) = -sumdiv(n, d, (-n/d)^d); \\ Michel Marcus, Mar 22 2021

Formula

G.f.: Sum_{n>0} n*x^n/(1+n*x^n).

A294956 a(n) = Sum_{d|n} d^(d + n/d).

Original entry on oeis.org

1, 9, 82, 1041, 15626, 280212, 5764802, 134221889, 3486785131, 100000078254, 3138428376722, 106993207077516, 3937376385699290, 155568095598166344, 6568408355713287812, 295147905180426634241, 14063084452067724991010
Offset: 1

Views

Author

Seiichi Manyama, Nov 12 2017

Keywords

Crossrefs

Programs

  • Mathematica
    sd[n_]:=Total[#^(#+n/#)&/@Divisors[n]]; Array[sd,20] (* Harvey P. Dale, Mar 28 2021 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d));
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(k^(k-1)))))) \\ Seiichi Manyama, Jun 09 2019
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k*x^k))) \\ Seiichi Manyama, Jan 11 2023

Formula

L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^(k^(k-1))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 09 2019
G.f.: Sum_{k>0} k^(k+1) * x^k / (1 - k * x^k). - Seiichi Manyama, Jan 11 2023

A309369 a(n) = Sum_{d|n} phi(n/d)^d, where phi = Euler totient function (A000010).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 10, 15, 22, 11, 34, 13, 44, 105, 42, 17, 116, 19, 314, 357, 112, 23, 426, 1045, 158, 747, 1474, 29, 5290, 31, 594, 3069, 274, 24185, 6082, 37, 344, 9945, 67922, 41, 63542, 43, 12170, 303225, 508, 47, 74834, 279979, 1050022, 135201, 29098, 53, 309872, 4294345
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 25 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[n/d]^d, {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 55; CoefficientList[Series[-Log[Product[(1 - EulerPhi[k] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-1)); \\ Seiichi Manyama, Mar 13 2021

Formula

G.f.: Sum_{k>=1} phi(k)*x^k/(1 - phi(k)*x^k).
L.g.f.: -log(Product_{k>=1} (1 - phi(k)*x^k)^(1/k)).
a(p) = p for p prime.
a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(gcd(k, n) - 1). - Seiichi Manyama, Mar 13 2021

A327238 Expansion of Sum_{k>=1} ((1 + k * x^k)^k - 1).

Original entry on oeis.org

1, 4, 9, 20, 25, 63, 49, 160, 108, 350, 121, 940, 169, 1225, 1475, 2304, 289, 7560, 361, 8025, 12446, 7139, 529, 58192, 3750, 13858, 61965, 102655, 841, 191181, 961, 318464, 220704, 40460, 354172, 1304370, 1369, 63175, 629863, 4012608, 1681, 1916733, 1849
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 43; CoefficientList[Series[Sum[((1 + k x^k)^k - 1), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (n/#)^# Binomial[n/#, #] &], {n, 1, 43}]
  • PARI
    a(n)={sumdiv(n, d, (n/d)^d * binomial(n/d,d))} \\ Andrew Howroyd, Sep 14 2019

Formula

a(n) = Sum_{d|n} (n/d)^d * binomial(n/d,d).
a(p) = p^2, where p is prime.

A308509 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 9, 2, 1, 17, 28, 33, 6, 4, 1, 33, 82, 129, 26, 24, 2, 1, 65, 244, 513, 126, 182, 8, 4, 1, 129, 730, 2049, 626, 1458, 50, 41, 3, 1, 257, 2188, 8193, 3126, 11954, 344, 577, 37, 4, 1, 513, 6562, 32769, 15626, 99594, 2402, 8705, 811, 68, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,     1,      1, ...
   2,  3,   5,    9,    17,    33,     65, ...
   2,  4,  10,   28,    82,   244,    730, ...
   3,  9,  33,  129,   513,  2049,   8193, ...
   2,  6,  26,  126,   626,  3126,  15626, ...
   4, 24, 182, 1458, 11954, 99594, 840242, ...
		

Crossrefs

Columns k=0..3 give A000005, A055225, A073705, A073706.
Cf. A294579.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
  • PARI
    T(n,k) = sumdiv(n, d, (n/d)^(k*d));
    matrix(9, 9, n, k, T(n,k-1)) \\ Michel Marcus, Jun 02 2019

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j)).
A(n,k) = Sum_{d|n} (n/d)^(k*d).

A362683 Expansion of Sum_{k>0} (1/(1 - k*x^k)^2 - 1).

Original entry on oeis.org

2, 7, 10, 25, 16, 78, 22, 153, 136, 298, 34, 1254, 40, 1214, 2004, 3825, 52, 11385, 58, 20894, 18932, 25006, 70, 150002, 18826, 115274, 199828, 389510, 88, 1334624, 94, 1725281, 2131188, 2360266, 725948, 14878299, 112, 10486958, 22329428, 37317986, 124, 120957336, 130
Offset: 1

Views

Author

Seiichi Manyama, Jun 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (n/#)^# * (# + 1) &]; Array[a, 50] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d)^d*(d+1));

Formula

a(n) = Sum_{d|n} (n/d)^d * (d+1) = A055225(n) + A359103(n).
If p is prime, a(p) = 1 + 3*p.

A180851 Sum of increasing powers of divisors: a(n) = Sum_{i=1..q} d(i)^i where d(1) < d(2) < ... < d(q) are the divisors of n.

Original entry on oeis.org

1, 5, 10, 69, 26, 1328, 50, 4165, 739, 10130, 122, 2994048, 170, 38764, 50760, 1052741, 290, 34072601, 362, 64100694, 194834, 235592, 530, 110111416192, 15651, 459178, 532180, 482430598, 842, 656271867808, 962, 1074794565, 1187262
Offset: 1

Views

Author

Jason Earls, Sep 21 2010

Keywords

Examples

			For n=4, the divisors of 4 are [1, 2, 4] and summing them as increasing powers yields: 1^1+2^2+4^3 = 69.
For n=12, the divisors of 12 are [1, 2, 3, 4, 6, 12] and summing them as increasing powers yields: 1^1+2^2+3^3+4^4+6^5+12^6 = 2994048.
		

Crossrefs

Cf. A027750.
Positions of primes: A180852.
Comparable sequences: A055225, A264786, A344459.

Programs

  • Maple
    f:= proc(n) local D,k;
      D:=sort(convert(numtheory:-divisors(n),list));
      add(D[k]^k,k=1..nops(D))
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 11 2020
  • Mathematica
    Total[Divisors[#]^Range[DivisorSigma[0,#]]]&/@Range[40] (* Harvey P. Dale, Aug 16 2011 *)
  • PARI
    a(n) = my(d = divisors(n)); sum(k=1, #d, d[k]^k); \\ Michel Marcus, Jan 01 2016

Extensions

Name made precise by Peter Munn, Sep 19 2024

A327579 a(n) = n! * Sum_{d|n} d^(n/d) / d!.

Original entry on oeis.org

1, 4, 9, 76, 125, 4686, 5047, 389768, 1995849, 62445610, 39916811, 23574862092, 6227020813, 5667436494734, 55630647072015, 2922249531801616, 355687428096017, 2425220588831040018, 121645100408832019, 1364553980880330240020, 18677216386213152768021, 1152100749379237026969622
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 17 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! Sum[d^(n/d)/d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[x^k/((k - 1)! (1 - k x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = n! * sumdiv(n, d, d^(n/d) / d!); \\ Michel Marcus, Sep 17 2019

Formula

E.g.f.: Sum_{k>=1} x^k / ((k - 1)! * (1 - k * x^k)).

A294463 E.g.f.: Product_{k>0} (1-k*x^k)^(1/k).

Original entry on oeis.org

1, -1, -2, 0, -12, 180, -1080, 15120, -45360, -15120, 6501600, 166320000, -6017457600, 73297224000, 724669545600, -32528399904000, 169180371360000, 6794185638240000, -119705492402496000, 2601008778880512000, -119160456995099520000
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2017

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, (1-k*x^k)^(1/k))))

Formula

a(0) = 1 and a(n) = -(n-1)! * Sum_{k=1..n} A055225(k)*a(n-k)/(n-k)! for n > 0.
E.g.f.: exp(-Sum_{k>=1} Sum_{j>=1} j^(k-1)*x^(j*k)/k). - Ilya Gutkovskiy, May 28 2018
Previous Showing 11-20 of 45 results. Next