A073705
a(n) = Sum_{ d divides n } (n/d)^(2d).
Original entry on oeis.org
1, 5, 10, 33, 26, 182, 50, 577, 811, 1750, 122, 16194, 170, 18982, 74900, 135425, 290, 847127, 362, 2498178, 4901060, 4209430, 530, 78564226, 9766251, 67138102, 387952660, 542674914, 842, 4866184552, 962, 8606778369, 31382832260, 17179953862, 6385992100, 422091411267, 1370, 274878038710
Offset: 1
a(10) = (10/1)^(2*1) +(10/2)^(2*2) +(10/5)^(2*5) +(10/10)^(2*10) = 1750 because positive divisors of 10 are 1, 2, 5, 10.
-
Table[Total[Quotient[n, x = Divisors[n]]^(2*x)], {n, 34}] (* Jayanta Basu, Jul 08 2013 *)
-
a(n):= lsum(d^(2*n/d),d,listify(divisors(n)));
makelist(a(n),n,1,40); /* Emanuele Munarini , Feb 03 2014 */
-
a(n)=sumdiv(n, d, (d)^(2*n/d) ); /* Joerg Arndt, Oct 07 2012 */
Corrected a(14) and inserted missing a(16) by
Jayanta Basu, Jul 08 2013
A076717
a(n) = -Sum_{d|n} (-n/d)^d.
Original entry on oeis.org
1, 1, 4, -1, 6, 4, 8, -25, 37, 16, 12, -106, 14, 92, 384, -561, 18, -65, 20, -706, 2552, 1948, 24, -15658, 3151, 8048, 20440, -2570, 30, -33326, 32, -135393, 178512, 130816, 94968, -583219, 38, 523964, 1596560, -2465370, 42, -2521186, 44, -15082, 16364502, 8388124, 48, -78560082, 823593, 23888231
Offset: 1
A294956
a(n) = Sum_{d|n} d^(d + n/d).
Original entry on oeis.org
1, 9, 82, 1041, 15626, 280212, 5764802, 134221889, 3486785131, 100000078254, 3138428376722, 106993207077516, 3937376385699290, 155568095598166344, 6568408355713287812, 295147905180426634241, 14063084452067724991010
Offset: 1
-
sd[n_]:=Total[#^(#+n/#)&/@Divisors[n]]; Array[sd,20] (* Harvey P. Dale, Mar 28 2021 *)
-
a(n) = sumdiv(n, d, d^(d+n/d));
-
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^(k^(k-1)))))) \\ Seiichi Manyama, Jun 09 2019
-
my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k+1)*x^k/(1-k*x^k))) \\ Seiichi Manyama, Jan 11 2023
A309369
a(n) = Sum_{d|n} phi(n/d)^d, where phi = Euler totient function (A000010).
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 7, 10, 15, 22, 11, 34, 13, 44, 105, 42, 17, 116, 19, 314, 357, 112, 23, 426, 1045, 158, 747, 1474, 29, 5290, 31, 594, 3069, 274, 24185, 6082, 37, 344, 9945, 67922, 41, 63542, 43, 12170, 303225, 508, 47, 74834, 279979, 1050022, 135201, 29098, 53, 309872, 4294345
Offset: 1
-
Table[Sum[EulerPhi[n/d]^d, {d, Divisors[n]}], {n, 1, 55}]
nmax = 55; CoefficientList[Series[Sum[EulerPhi[k] x^k/(1 - EulerPhi[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 55; CoefficientList[Series[-Log[Product[(1 - EulerPhi[k] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Rest
-
a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-1)); \\ Seiichi Manyama, Mar 13 2021
A327238
Expansion of Sum_{k>=1} ((1 + k * x^k)^k - 1).
Original entry on oeis.org
1, 4, 9, 20, 25, 63, 49, 160, 108, 350, 121, 940, 169, 1225, 1475, 2304, 289, 7560, 361, 8025, 12446, 7139, 529, 58192, 3750, 13858, 61965, 102655, 841, 191181, 961, 318464, 220704, 40460, 354172, 1304370, 1369, 63175, 629863, 4012608, 1681, 1916733, 1849
Offset: 1
-
nmax = 43; CoefficientList[Series[Sum[((1 + k x^k)^k - 1), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, (n/#)^# Binomial[n/#, #] &], {n, 1, 43}]
-
a(n)={sumdiv(n, d, (n/d)^d * binomial(n/d,d))} \\ Andrew Howroyd, Sep 14 2019
A308509
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 9, 2, 1, 17, 28, 33, 6, 4, 1, 33, 82, 129, 26, 24, 2, 1, 65, 244, 513, 126, 182, 8, 4, 1, 129, 730, 2049, 626, 1458, 50, 41, 3, 1, 257, 2188, 8193, 3126, 11954, 344, 577, 37, 4, 1, 513, 6562, 32769, 15626, 99594, 2402, 8705, 811, 68, 2
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 5, 9, 17, 33, 65, ...
2, 4, 10, 28, 82, 244, 730, ...
3, 9, 33, 129, 513, 2049, 8193, ...
2, 6, 26, 126, 626, 3126, 15626, ...
4, 24, 182, 1458, 11954, 99594, 840242, ...
-
T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
-
T(n,k) = sumdiv(n, d, (n/d)^(k*d));
matrix(9, 9, n, k, T(n,k-1)) \\ Michel Marcus, Jun 02 2019
A362683
Expansion of Sum_{k>0} (1/(1 - k*x^k)^2 - 1).
Original entry on oeis.org
2, 7, 10, 25, 16, 78, 22, 153, 136, 298, 34, 1254, 40, 1214, 2004, 3825, 52, 11385, 58, 20894, 18932, 25006, 70, 150002, 18826, 115274, 199828, 389510, 88, 1334624, 94, 1725281, 2131188, 2360266, 725948, 14878299, 112, 10486958, 22329428, 37317986, 124, 120957336, 130
Offset: 1
-
a[n_] := DivisorSum[n, (n/#)^# * (# + 1) &]; Array[a, 50] (* Amiram Eldar, Jul 17 2023 *)
-
a(n) = sumdiv(n, d, (n/d)^d*(d+1));
A180851
Sum of increasing powers of divisors: a(n) = Sum_{i=1..q} d(i)^i where d(1) < d(2) < ... < d(q) are the divisors of n.
Original entry on oeis.org
1, 5, 10, 69, 26, 1328, 50, 4165, 739, 10130, 122, 2994048, 170, 38764, 50760, 1052741, 290, 34072601, 362, 64100694, 194834, 235592, 530, 110111416192, 15651, 459178, 532180, 482430598, 842, 656271867808, 962, 1074794565, 1187262
Offset: 1
For n=4, the divisors of 4 are [1, 2, 4] and summing them as increasing powers yields: 1^1+2^2+4^3 = 69.
For n=12, the divisors of 12 are [1, 2, 3, 4, 6, 12] and summing them as increasing powers yields: 1^1+2^2+3^3+4^4+6^5+12^6 = 2994048.
-
f:= proc(n) local D,k;
D:=sort(convert(numtheory:-divisors(n),list));
add(D[k]^k,k=1..nops(D))
end proc:
map(f, [$1..100]); # Robert Israel, Sep 11 2020
-
Total[Divisors[#]^Range[DivisorSigma[0,#]]]&/@Range[40] (* Harvey P. Dale, Aug 16 2011 *)
-
a(n) = my(d = divisors(n)); sum(k=1, #d, d[k]^k); \\ Michel Marcus, Jan 01 2016
A327579
a(n) = n! * Sum_{d|n} d^(n/d) / d!.
Original entry on oeis.org
1, 4, 9, 76, 125, 4686, 5047, 389768, 1995849, 62445610, 39916811, 23574862092, 6227020813, 5667436494734, 55630647072015, 2922249531801616, 355687428096017, 2425220588831040018, 121645100408832019, 1364553980880330240020, 18677216386213152768021, 1152100749379237026969622
Offset: 1
-
a[n_] := n! Sum[d^(n/d)/d!, {d, Divisors[n]}]; Table[a[n], {n, 1, 22}]
nmax = 22; CoefficientList[Series[Sum[x^k/((k - 1)! (1 - k x^k)), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
-
a(n) = n! * sumdiv(n, d, d^(n/d) / d!); \\ Michel Marcus, Sep 17 2019
A294463
E.g.f.: Product_{k>0} (1-k*x^k)^(1/k).
Original entry on oeis.org
1, -1, -2, 0, -12, 180, -1080, 15120, -45360, -15120, 6501600, 166320000, -6017457600, 73297224000, 724669545600, -32528399904000, 169180371360000, 6794185638240000, -119705492402496000, 2601008778880512000, -119160456995099520000
Offset: 0
Comments