cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 53 results. Next

A266548 Least prime p such that n + p^3 = x^2 + y^3 for some positive integers x and y, or 0 if no such prime p exists.

Original entry on oeis.org

71, 2, 2, 5, 2, 3767, 3, 7, 7, 2, 3, 23, 53, 13, 17, 13, 2, 3, 2, 7, 2, 23, 11, 2, 17, 2, 7, 5, 2, 2, 3, 19, 257, 8039, 13, 2, 2, 59, 3, 5, 17, 3, 2, 61, 2, 3, 3, 37, 313, 2, 631, 17, 5, 3, 17, 2, 17, 2, 7, 97, 2, 47, 3, 29, 2, 2, 31, 47, 2, 7, 19
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 31 2015

Keywords

Comments

Conjecture: (i) Any integer can be written as x^2 + y^3 - p^3, where x and y are positive integers, and p is a prime.
(ii) Each integer can be written as x^2 - y^3 + p^3, where x and y are positive integers, and p is a prime.
See also A266230 and A266277 for related conjectures.
Is every prime in this sequence? - David A. Corneth, Dec 30 2017

Examples

			a(0) = 71 since 0 + 71^3 = 588^2 + 23^3 with 71 prime.
a(3) = 5 since 3 + 5^3 = 8^2 + 4^3 with 5 prime.
a(5) = 3767 since 5 + 3767^3 = 214886^2 + 1938^3 with 3767 prime.
a(2966) = 68371 since 2966 + 68371^3 = 17867983^2 + 6992^3 with 68371 prime.
a(7880) = 51137 since 7880 + 51137^3 = 10176509^2 + 31128^3 with 51137 prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=Prime[n]
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[x=1;Label[bb];Do[If[SQ[n+p[x]^3-y^3],Print[n," ",p[x]];Goto[aa]],{y,1,(n+p[x]^3-1)^(1/3)}];x=x+1;Goto[bb];Label[aa];Continue,{n,0,70}]
  • PARI
    isokp(p, n) = {my(s = n+p^3); for (k=1, sqrtnint(s, 3), if ((q=s-k^3) && issquare(q), return (1)););}
    a(n) = {p = 2; while(!isokp(p, n), p = nextprime(p+1)); p;} \\ Michel Marcus, Jan 04 2016
    
  • PARI
    a(n, {plim = 2}) = forprime(p = plim, oo, c = n + p^3; for(i = 1, sqrtnint(c, 3), if(issquare(c - i^3) && c - i^3 > 0, return(p))))
    first(n, {plim = 100}) = {my(res = vector(n), l = List(), s, i, c);
    for(u=1, sqrtint((n+plim^3)\1-1), for(v=1, sqrtnint((n+plim^3)\1-u^2, 3), listput(l, u^2+v^3))); l = Set(l); forprime(p = 2, plim, s = 1; while(l[s] < p^3 + 1, s++); for(i = s, #l, c = l[i] - p^3; if(c <= n, if(res[c] == 0, res[c] = p)
    , next(2)))); for(i = 1, n, if(res[i] == 0, res[i] = a(i, plim + 1))); concat([71], res)} \\ David A. Corneth, Dec 30 2017

A066647 Squares of the form a^2 + b^3 with a, b > 0.

Original entry on oeis.org

9, 36, 100, 196, 225, 289, 441, 576, 784, 841, 1225, 1296, 1764, 1849, 2025, 2304, 3025, 3249, 3600, 3844, 3969, 4356, 5776, 6084, 6400, 6561, 8100, 8281, 9801, 11025, 12544, 13924, 14161, 14400, 15129, 16129, 16641, 17424, 18496, 19600, 19881, 20449, 21609, 23409
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2001

Keywords

Examples

			29^2 = a(9) = 841 = 625 + 216 = 25^2 + 6^3.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Length[Reduce[a^2 + b^3 == n && a > 0 && b > 0, {a, b}, Integers]] > 0; Select[Range[140]^2, q] (* Amiram Eldar, Mar 20 2025 *)

Formula

a(n) = A070745(n)^2. - Amiram Eldar, Mar 20 2025

A066648 Cubes of the form a^2 + b^3 with a, b > 0.

Original entry on oeis.org

512, 1000, 2744, 21952, 32768, 35937, 64000, 175616, 185193, 274625, 357911, 373248, 405224, 474552, 729000, 1157625, 1404928, 1481544, 2000376, 2097152, 2197000, 2299968, 2744000, 3241792, 3652264, 3723875, 4096000, 5451776, 7189057, 8000000, 10218313, 10360232
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2001

Keywords

Examples

			8^3 = a(0) = 512 = 169 + 343 = 13^2 + 7^3;
10^3 = a(1) = 1000 = 784 + 216 = 28^2 + 6^3.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Length[Reduce[a^2 + b^3 == n && a > 0 && b > 0, {a, b}, Integers]] > 0; Select[Range[220]^3, q] (* Amiram Eldar, Mar 20 2025 *)

Formula

a(n) = A228946(n)^3. - R. J. Mathar, Dec 03 2015

A078383 Sum of distinct prime factors of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 3, 7, 5, 17, 5, 15, 9, 31, 14, 5, 37, 43, 13, 7, 15, 22, 10, 18, 19, 5, 73, 21, 7, 43, 89, 20, 7, 101, 5, 113, 63, 12, 127, 2, 46, 69, 50, 34, 39, 10, 21, 30, 43, 24, 22, 34, 62, 42, 10, 9, 197, 22, 105, 15, 38, 18, 223, 8, 115, 31, 233, 241, 46, 12, 257, 20, 16, 58, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Total[FactorInteger[#][[;; , 1]]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A008472(A055394(n)).

A078384 Sum of all prime factors of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 6, 7, 7, 17, 9, 15, 11, 31, 14, 10, 37, 43, 15, 12, 17, 22, 13, 18, 21, 12, 73, 23, 13, 43, 89, 20, 14, 101, 13, 113, 63, 15, 127, 14, 46, 69, 50, 34, 41, 15, 25, 30, 45, 24, 25, 34, 62, 42, 16, 18, 197, 24, 105, 21, 38, 20, 223, 16, 115, 35, 233, 241, 46, 17, 257, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Total[Times @@@ FactorInteger[#]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A001414(A055394(n)).

A078386 Squarefree kernels of numbers which can be written as sum of a positive square and a positive cube.

Original entry on oeis.org

2, 5, 3, 10, 6, 17, 6, 26, 14, 31, 33, 6, 37, 43, 22, 10, 26, 57, 21, 65, 34, 6, 73, 38, 10, 82, 89, 91, 10, 101, 6, 113, 122, 42, 127, 2, 129, 134, 141, 145, 74, 30, 38, 161, 82, 170, 57, 174, 177, 185, 21, 14, 197, 102, 206, 26, 217, 110, 223, 15, 226, 58, 233, 241
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Examples

			A055394(12) = 3^2+3^3 = 36, a(12) = A007947(A055394(12)) = A007947(36) = A007947(2^2*3^2) = 2*3 = 6.
		

Crossrefs

Programs

  • Mathematica
    Times @@ FactorInteger[#][[;; , 1]] & /@ Select[Range[300], Length[Reduce[a^2 + b^3 == # && a > 0 && b > 0, {a, b}, Integers]] > 0 &] (* Amiram Eldar, Mar 27 2025 *)

Formula

a(n) = A007947(A055394(n)).

A111909 Numbers that cannot be represented as a^4 + b^2 with a, b > 0.

Original entry on oeis.org

1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 83, 84, 86, 87, 88
Offset: 1

Views

Author

Stefan Steinerberger, Nov 25 2005

Keywords

Examples

			3 cannot be represented as a^4 + b^2 and thus is in this sequence while 10 = 1^4 + 3^2 is not.
		

Crossrefs

Cf. A111925 (complement), A055394, A022549. A022544 is a subsequence.

Programs

  • PARI
    list(lim)=lim\=1; my(v=List(),u=vectorsmall(lim),m2); for(m=1,sqrtint(lim-1), m2=m^2; for(n=1,sqrtnint(lim-m2,4), u[m2+n^4]=1)); for(i=1,#u, if(!u[i], listput(v,i))); Set(v) \\ Charles R Greathouse IV, Sep 01 2015

Formula

a(n) = n + O(n^(3/4)). - Charles R Greathouse IV, Sep 01 2015

A123053 Sum of a positive square, a positive cube and a positive fourth power.

Original entry on oeis.org

3, 6, 10, 11, 13, 18, 21, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 40, 42, 44, 45, 47, 49, 51, 52, 53, 58, 59, 60, 64, 66, 68, 69, 73, 74, 77, 79, 81, 83, 84, 86, 88, 89, 90, 91, 92, 93, 96, 98, 101, 102, 105, 107, 109, 112, 114, 116, 117, 118, 123, 124, 125
Offset: 1

Views

Author

Jonathan Vos Post, Sep 25 2006

Keywords

Examples

			a(1) = 3 = 1^4 + 1^3 + 1^2.
a(2) = 6 = 1^4 + 1^3 + 2^2.
a(3) = 10 = 1^4 + 2^3 + 1^2.
a(4) = 11 = 1^4 + 1^3 + 3^2.
a(5) = 13 = 1^4 + 2^3 + 2^2.
a(6) = 18 = 1^4 + 1^3 + 4^2 = 1^4 + 2^3 + 3^2 = 2^4 + 1^3 + 1^2.
		

Crossrefs

Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A055394 (numbers that are the sum of a positive square and a positive cube).

Programs

  • Maple
    isA123053 := proc(n)
        local x,y,z ;
        for x from 1 do
            if x^2 > n then
                return false;
            end if;
            for y from 1 do
                if x^2+y^3> n then
                    break;
                end if;
                for z from 1 do
                    if x^2+y^3+z^4 > n then
                        break;
                    elif x^2+y^3+z^4 = n then
                        return true;
                    end if;
                end do:
            end do:
        end do:
    end proc:
    n := 1 ;
    for c from 0 to 10000 do
        if isA123053(c) then
            printf("%d %d\n",n,c) ;
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Sep 07 2020
  • Mathematica
    Select[ Union[ Total /@ Tuples[{Range[64]^2, Range[8]^4, Range[16]^3}]], # < 200 &] (* Giovanni Resta, Jun 12 2016 *)

Formula

{A000290 \ 0} + {A000578 \ 0} + {A000583}. {a^4 + b^3 + c^2 for a,b,c>0}.

Extensions

38, 86, and 93 added and 108 deleted by Giovanni Resta, Jun 12 2016

A274035 Numbers k such that k^7 = a^2 + b^3 for positive integers a and b.

Original entry on oeis.org

2, 5, 8, 9, 10, 12, 15, 17, 24, 26, 28, 31, 33, 36, 37, 40, 43, 44, 46, 50, 52, 54, 56, 57, 63, 65, 68, 69, 72, 73, 76, 80, 82, 89, 91, 98, 100, 101, 108, 113, 122, 126, 127, 128, 129, 134, 136, 141, 145, 148, 150, 152, 161, 164, 168, 170, 171, 174, 177, 183, 185, 189, 192, 196, 197
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{a, b}, For[b = 1, b < n^(7/3), b++, If[IntegerQ[a = Sqrt[n^7 - b^3]] && a > 0, Print["n = ", n, ", a = ", a, ", b = ", b]; Return[True]]]; False];
    Reap[For[n = 1, n < 200, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jan 30 2019 *)
  • PARI
    isA055394(n)=for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0
    is(n)=isA055394(n^7)
    
  • Sage
    # Sage cannot handle n = 123, 174, ... without the fallback, even with descent_second_limit = 1000.
    def fallback(n):
        return gp("my(n=" + str(n) + ");for(k=1,sqrtnint(n-1,3),if(issquare(n-k^3),return(1)));0")
    def isA055394(z):
        z7 = z^7
        E = EllipticCurve([0,z7], descent_second_limit = 1000)
        try:
            for c in E.integral_points():
                if c[0] < 0 and c[1] != 0:
                    return True
            return False
        except RuntimeError:
            return fallback(z7)
    [x for x in range(1, 201) if isA055394(x)]

Extensions

Missing term 174 inserted by Jean-François Alcover, Jan 30 2019

A295787 Positive integers m such that m, m + 1 and m + 2 are a sum of a positive square and a positive cube.

Original entry on oeis.org

126, 127, 350, 351, 441, 485, 511, 848, 1431, 1568, 2024, 2752, 2843, 3024, 3844, 4697, 5489, 7120, 7343, 7399, 8125, 8126, 8623, 9430, 9800, 10703, 10842, 11474, 12176, 12335, 12742, 12743, 13748, 14191, 14911, 15254, 16128, 16640, 16857, 17067, 17207, 18095, 18567
Offset: 1

Views

Author

David A. Corneth, Dec 30 2017

Keywords

Comments

Is a(n) >= c*n^e for some constants c and e? For terms in the b-file, we'd have e > 2.1598. - David A. Corneth, Mar 15 2019

Examples

			126 and 127 are terms because: 126 = 1^2 + 5^3, 127 = 10^2 + 3^3, 128 = 8^2 + 4^3, 129 = 11^2 + 2^3. - _Bernard Schott_, Mar 17 2019
		

Crossrefs

Cf. A055394.

Programs

  • Mathematica
    s = Union@ Flatten@ Table[s^2 + c^3, {s, 141}, {c, 27}]; First@# & /@ Select[Partition[s, 3, 1], #[[1]] + 2 == #[[3]] &] (* Robert G. Wilson v, Jan 07 2018 *)
    With[{mx=19000},Select[Partition[Union[Flatten[Table[a^2+b^3,{a,Ceiling[ Sqrt[mx]]},{b,Ceiling[Surd[mx,3]]}]]],3,1],Differences[#]=={1,1}&]][[All,1]] (* Harvey P. Dale, Sep 07 2020 *)
  • PARI
    is_a055394(n) = for(k=1, sqrtnint(n-1, 3), if(issquare(n-k^3), return(1))); 0 \\ after Charles R Greathouse IV
    is(n) = is_a055394(n) && is_a055394(n+1) && is_a055394(n+2) \\ Felix Fröhlich, Jan 08 2018
    
  • PARI
    See Corneth Link \\ David A. Corneth, Mar 15 2019
Previous Showing 21-30 of 53 results. Next