cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 60 results. Next

A135719 a(n) is the index of the smallest Carmichael number (A002997) with n prime divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 11, 40, 403, 1224, 4886, 19096, 120137, 485941, 2974628, 25293838
Offset: 3

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Crossrefs

Formula

A002997(a(n)) = A006931(n). - M. F. Hasler, Apr 14 2015

Extensions

a(8)-a(11) from Donovan Johnson, Feb 23 2012
a(12) from Amiram Eldar, Jul 08 2019
Escape clause added by Jianing Song, Dec 12 2021
a(13) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024

A175531 Carmichael numbers of order 2.

Original entry on oeis.org

443372888629441, 39671149333495681, 842526563598720001, 2380296518909971201, 3188618003602886401, 4208895375600667752001
Offset: 1

Views

Author

Max Alekseyev, Jun 08 2010

Keywords

Comments

Odd composite integer k is in this sequence if k == 1 or p (mod p^2 - 1) for every prime p|k.

Crossrefs

Subsequence of A002997, A175530, and A299799.

Extensions

a(6) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024

A290793 Carmichael numbers k such that Euler totient function of k (phi(k)) is a cube.

Original entry on oeis.org

63973, 18162001, 26921089, 133205761, 225745345, 490503601, 496050841, 698548201, 1031750401, 1100674561, 1384157161, 2178944461, 3805181281, 11351100241, 12648201841, 26498875681, 26542598401, 28553256865, 28645206001, 37590868801, 39866123377, 40527674881
Offset: 1

Views

Author

Amiram Eldar, Aug 10 2017

Keywords

Comments

Banks proved that for each positive integer N there are an infinite number of Carmichael numbers whose Euler totient function value is an N-th power. Therefore this sequence is infinite.
The terms were calculated using Pinch's tables of Carmichael numbers (see link below).

Examples

			phi(63973) = 36^3.
		

Crossrefs

Intersection of A002997 (Carmichael numbers) and A039771.

Programs

  • Mathematica
    With[{s = Import["b002997.txt", "Data"][[All, -1]]}, Select[s, IntegerQ@ Power[EulerPhi@ #, 1/3] &]] (* Michael De Vlieger, Aug 14 2017, using b-file at A002997 *)

A290945 Triangular Carmichael numbers.

Original entry on oeis.org

561, 8911, 10585, 41041, 115921, 314821, 334153, 6313681, 8134561, 14913991, 32914441, 60957361, 67902031, 135556345, 289766701, 321197185, 329769721, 368113411, 471905281, 765245881, 842202361, 962442001, 1507746241, 2489462641, 2588653081, 3104207821
Offset: 1

Views

Author

Amiram Eldar, Aug 14 2017

Keywords

Comments

Intersection of A000217 and A002997.
The least triangular Carmichael numbers with the number of prime factors = 3, 4, 5, 6, 7, ... are: 561, 41041, 765245881, 321197185, 1583892181303201, ...
The number of terms below 10^k for k = 3, 4, ... are: 1, 2, 4, 7, 9, 13, 22, 32, 53, 77, 137, 211, 358, 545, 879, 1423, ...
Jonathan Vos Post discovered in 2004 that a(21) = 842202361 = A000217(41041) = A002817(286) is also a doubly triangular Carmichael number. The next number with this property is a(1108) = 292800629576356021 = A000217(765245881) = A002817(39121) (41041 and 765245881 are triangular Carmichael numbers that are also indices of triangular numbers that are also Carmichael numbers).

Examples

			8911 = A000217(133) = A002997(7) therefore 8911 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    seqQ[n_]:=IntegerQ[Sqrt[8n+1]] && !PrimeQ[n] && (Mod[n, CarmichaelLambda[n]] == 1); Select[Range[10^6], seqQ]

A291612 Carmichael numbers k that satisfy 2^d == 2^(k/d) (mod k) for all d|k and are not Super-Poulet numbers (A050217).

Original entry on oeis.org

1105, 852841, 3828001, 17098369, 118901521, 150846961, 172947529, 186393481, 200753281, 686059921, 771043201, 1001152801, 1207252621, 1269295201, 1632785701, 1772267281, 2301745249, 4765950001, 4897161361, 5278692481, 6030849889, 8251854001, 12121569601, 12456671569
Offset: 1

Views

Author

Keywords

Comments

Intersection of A002997 and A291602.

Examples

			Carmichael number 1105 = 5*13*17 is a term because 2^5 == 2^(13*17) (mod 1105), 2^13 == 2^(5*17) (mod 1105), 2^17 == 2^(5*13) (mod 1105) and it is not a Super-Poulet number.
		

Crossrefs

A329417 Carmichael numbers m that have at least 3 prime factors p such that (p-1)*p^2 divides m-p.

Original entry on oeis.org

12876480001, 102293818705, 162303632569, 639554081761, 783962120161, 3224063844001, 4553777859841, 10276904735461, 40867660260505, 51496980091921, 51641004415105, 52412615611201, 52933062609505, 73892907966241, 97388953462801, 107862864807061, 182236335107905, 210587050134721
Offset: 1

Views

Author

Amiram Eldar and Daniel Suteu, Nov 29 2019

Keywords

Comments

In 1950, Giuga conjectured that there are no composite numbers n for which 1^(n-1) + 2^(n-1) + ... + (n-1)^(n-1) == -1 (mod n). If such a number exists, then it must be a Carmichael number n such that (p-1)*p^2 divides n-p for every prime p dividing n.

Examples

			m = 12876480001 is a term because it is a Carmichael number, and it has at least 3 prime factors p, {7, 11, 37}, such that (p-1)*p^2 divides m-p.
		

References

  • Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi (in Italian), Istituto Lombardo Scienze e Lettere, Rendiconti di Classe di scienze matematiche e naturali, Vol. 83 (1950), pp. 511-528.

Crossrefs

Cf. A002997.

Programs

A202562 Carmichael numbers whose prime factors do not divide any smaller Carmichael number.

Original entry on oeis.org

561, 84350561, 851703301, 2436691321, 34138047673, 60246018673, 63280622521, 83946864769, 110296864801, 114919915021, 155999871721, 225593397919, 342267565249, 534919693681, 660950414671, 733547013841, 1079942171239, 1301203515361, 1333189866793
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 21 2011

Keywords

Comments

Note that all terms so far have only three prime factors.

Examples

			a(2) = 84350561 because 84350561 = 107*743*1061 and the smaller Carmichael numbers do not have the factors 107, 743 or 1061.
		

Crossrefs

A207080 The smallest Carmichael number k such that phi(k) does not divide (k-1)^n, where phi is the Euler totient function.

Original entry on oeis.org

561, 2821, 838201, 41471521, 45496270561, 776388344641, 344361421401361, 375097930710820681, 330019822807208371201, 4971170854788923506051
Offset: 1

Views

Author

Keywords

Comments

Conjecture: phi(a(n)) divides (a(n)-1)^(n+1).
a(10) <= 9645020063586019926451. - Daniel Suteu, Dec 25 2020

Crossrefs

Cf. A000010, A002997 (Carmichael numbers), A173703.

Programs

  • PARI
    is_c(n) = { my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1; }
    isok(k, n) = ((k-1)^n % eulerphi(k)) != 0;
    a(n) = my(k=1); while (!(is_c(k) && isok(k,n)), k++); k; \\ Michel Marcus, Dec 25 2020

Extensions

a(7)-a(9) from Richard Pinch, Feb 18 2012
a(10) calculated using data from Claude Goutier and added by Amiram Eldar, Apr 20 2024

A225005 Number of Carmichael numbers (A002997) less than 2^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 6, 9, 10, 15, 19, 23, 33, 45, 55, 69, 95, 130, 162, 214, 290, 375, 483, 656, 864, 1118, 1446, 1874, 2437, 3130, 4058, 5188, 6642, 8521, 11002, 14236, 18400, 23631, 30521, 39376, 50685, 65590, 84817, 109857, 141892, 183507, 237217, 307278, 398506, 517446, 672105, 873109, 1136472, 1479525, 1927138, 2513234, 3278553, 4279356
Offset: 1

Views

Author

Max Alekseyev, Apr 23 2013

Keywords

Crossrefs

Partial sums of A182490.

A253595 Least Carmichael number that is divisible by the n-th cyclic number A003277(n), or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 62745, 561, 1729, 6601, 2465, 2821, 561, 825265, 29341, 6601, 334153, 62745, 561, 2433601, 74165065, 29341, 1105, 8911, 116150434401, 10024561, 10585, 41041, 2508013, 55462177, 1105, 11921001
Offset: 3

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

Has any odd cyclic number at least one Carmichael multiple?

Examples

			a(8) = 62745 because this is the least Carmichael number which is divisible by 15 (the 8th cyclic number).
		

Crossrefs

Programs

  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    a(n) = {on = odd cyclic number(n); cn = 1; until (isA002997(cn) && (cn % on == 0), cn++); cn; }

Extensions

a(292)-a(853) from Max Alekseyev, Apr 26 2015
Escape clause added by Jianing Song, Dec 12 2021
Previous Showing 21-30 of 60 results. Next