cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A204517 Square root of floor[A055859(n)/7].

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 17, 48, 96, 271, 765, 1530, 4319, 12192, 24384, 68833, 194307, 388614, 1097009, 3096720, 6193440, 17483311, 49353213, 98706426, 278635967, 786554688, 1573109376, 4440692161, 12535521795, 25071043590, 70772438609, 199781794032, 399563588064
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=7;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))
    
  • PARI
    A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)),n)

Formula

A204517(n) = sqrt(floor(A204516(n)^2/7)).
G.f. = (x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6)

A008843 Squares of NSW numbers (A002315): x^2 such that x^2 - 2y^2 = -1 for some y.

Original entry on oeis.org

1, 49, 1681, 57121, 1940449, 65918161, 2239277041, 76069501249, 2584123765441, 87784138523761, 2982076586042449, 101302819786919521, 3441313796169221281, 116903366249966604049, 3971273138702695316401, 134906383349641674153601, 4582845760749114225906049, 155681849482120242006652081
Offset: 0

Views

Author

Keywords

Comments

Also indices of triangular numbers (A000217) which are also centered octagonal numbers (A016754). - Colin Barker, Jan 16 2015
a(n)-th triangular number is a square; subsequence of A001108. - Jaroslav Krizek, Aug 05 2016

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 256.
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 288.
  • P. F. Teilhet, Note #2094, L'Intermédiaire des Mathématiciens, 10 (1903), pp. 235-238.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{1,49,1681},17] (* Stefano Spezia, Aug 17 2024 *)

Formula

a(n) = 34*a(n-1) - a(n-2) + 16 = A002315(n)^2 = 2*A001653(n)^2 - 1 = 2*A008844(n) - 1 = floor(A046176(n)*sqrt(2)) = 6*A055792(n+1) - a(n-1) + 4 = (6*A055792(n+2) + a(n-1) - 20)/35. - Henry Bottomley, Nov 13 2001
a(n) = A001108(2n+1). - Ira M. Gessel, Nov 05 2014
a(n) = Sum_{k=1..2*n+1} 2^(k-1)*binomial(4*n+2, 2*k). - Zoltan Zachar (zachar(AT)fellner.sulinet.hu), Oct 03 2003
O.g.f.: -(1+14*x+x^2)/((-1+x)*(1-34*x+x^2)). - R. J. Mathar, Nov 23 2007
a(n) = -(cosh((2*n - 1)*arctanh(sqrt(2))))^2 = -1 - (sinh((2*n - 1)*arctanh(sqrt(2))))^2. - Artur Jasinski, Oct 30 2008
a(n) = Sum_{k=0..4n+1} A000129(k), see Santana and Diaz-Barrero link at A002315. - Ivan N. Ianakiev, Jul 15 2022

Extensions

a(14)-a(17) from Stefano Spezia, Aug 17 2024

A204512 Square roots of [A055872/8]: Their square written in base 8, with some digit appended, is again a square.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 35, 70, 204, 408, 1189, 2378, 6930, 13860, 40391, 80782, 235416, 470832, 1372105, 2744210, 7997214, 15994428, 46611179, 93222358, 271669860, 543339720, 1583407981, 3166815962, 9228778026, 18457556052, 53789260175, 107578520350
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A031150. The square of the terms (= truncated squares A055872) are listed in A204504.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).

Programs

  • Mathematica
    CoefficientList[Series[(x^4 (1+2x))/(1-6x^2+x^4),{x,0,40}],x] (* Harvey P. Dale, Nov 30 2020 *)
  • PARI
    b=8;for(n=1,1e7,issquare(n^2\b) & print1(sqrtint(n^2\b)","))
    
  • PARI
    a(n)=polcoeff((2*x^5 + x^4)/(x^4 - 6*x^2 + 1+O(x^n)),n)

Formula

G.f. = x^4*(1 + 2*x)/(1 - 6*x^2 + x^4)

A349079 Numbers k such that there exists m, 1 <= m <= k with the property that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

1, 2, 4, 8, 12, 14, 16, 18, 20, 24, 28, 32, 34, 36, 40, 44, 48, 52, 56, 60, 62, 64, 68, 72, 76, 80, 84, 88, 92, 96, 98, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 142, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 194, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 1

Views

Author

Bernard Schott, Nov 07 2021

Keywords

Comments

If k is a term, then A348692(k) lists integers m such that k$ / m! is a square; and for each k, there exist only one (A349080) or two (A349081) such integers m.
See A348692 for further information, links and references about Olympiads.
Except for 1, all terms are even, and, when k is such an even term, corresponding m belong(s) to {k/2 - 2, k/2 - 1, k/2, k/2 + 1, k/2 + 2}.
This sequence is the union of {1} and of three infinite and disjoint subsequences:
-> A008586, so every positive multiple of 4 is a term and in this case, for k=4*q, (k$)/(k/2)! = ( 2^(k/4) * Product_{j=1..k/2} ((2j-1)!) )^2 (see example 4).
-> A060626, so every k = 4*q^2 - 2 (q >= 1) is a term (see examples 2 and 14).
-> 2*A055792 = {k = 2q^2 with q>1 in A001541} = {18, 578, ...} (see example 18).

Examples

			2 is a term as 2$ / 2! = 1^2.
4 is a term as 4$ / 2! = 12^2.
14 is a term as 14$ / 8! = 1309248519599593818685440000000^2 and also 14$ / 9! = 436416173199864606228480000000^2.
18 is a term as 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2.
		

Crossrefs

Programs

  • Mathematica
    supfact[n_] := supfact[n] = BarnesG[n + 2]; fact[n_] := fact[n] = n!; q[k_] := AnyTrue[Range[k], IntegerQ @ Sqrt[supfact[k]/fact[#]] &]; Select[Range[230], q] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    f(n) = prod(k=2, n, k!); \\ A000178
    isok(k) = my(sf=f(k)); for (m=1, k, if (issquare(sf/m!), return(1))); \\ Michel Marcus, Nov 08 2021

A349080 Numbers k for which there exists only one integer m with 1 <= m <= k such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.

Original entry on oeis.org

1, 2, 4, 12, 18, 20, 24, 28, 34, 36, 40, 44, 52, 56, 60, 62, 64, 68, 76, 80, 84, 88, 92, 98, 100, 104, 108, 112, 116, 120, 124, 132, 136, 140, 142, 144, 148, 152, 156, 164, 168, 172, 176, 180, 184, 188, 192, 194, 196, 204, 208, 212, 216, 220, 224, 228, 232, 236, 244, 248, 252, 254, 256
Offset: 1

Views

Author

Bernard Schott, Nov 20 2021

Keywords

Comments

This sequence is the union of {1} and of three infinite and disjoint subsequences.
-> Numbers k divisible by 4 but not of the form 8q^2 or 8q(q+1) = {4, 12, 20, 24, 28, ...} (see A182834). For these numbers, the corresponding unique m = k/2 (see example for k = 4).
-> Even numbers k not divisible by 4 and of the form k = 2*A055792 = 2*q^2, q>1 in A001541 = {18, 578, ...}. For these numbers, the corresponding unique m = k/2 - 2 = q^2-2 (see example for k = 18)
-> Even numbers k not divisible by 4, that are in A060626 but not of the form k=2q^2-4 with q>1 in A001541 = {2, 34, 62, 98, 142, 194, ...} (A349496). For these numbers, the corresponding unique m = k/2 + 1 (see example for k = 2).
See A348692 for further information.

Examples

			For k = 2, 2$ / 2! = 1^2, hence 2 is a term.
For k = 4, 4$ /1! = 288, 4$ / 3! = 48, 4$ / 4! = 12 but for m = 2, 4$ / 2! = 12^2, hence 4 is a term.
For k = 18 and m = 7, we have 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2 and there is no other solution m, hence 18 is a term.
		

Crossrefs

Programs

A204519 Square root of floor(A055851(n)/6).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 11, 20, 40, 109, 198, 396, 1079, 1960, 3920, 10681, 19402, 38804, 105731, 192060, 384120, 1046629, 1901198, 3802396, 10360559, 18819920, 37639840, 102558961, 186298002
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-6 analog of A031150 [base 10], A204512 [base 8], A204517 (base 7), A204521 [base 5], A001353 [base 3], A001542 [base 2]. For bases 4 and 9, the corresponding sequence contains all integers.

Crossrefs

Programs

  • Mathematica
    Sqrt[Floor[Select[Range[100000],IntegerQ[Sqrt[Quotient[#^2,6]]]&]^2/6]] (* Vaclav Kotesovec, Nov 26 2012 *)
  • PARI
    b=6;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))

Formula

Conjecture (for n>=8): a(n) = 10*a(n-3) - a(n-6). - Vaclav Kotesovec, Nov 26 2012
Empirical g.f.: x^4*(x^3+4*x^2+2*x+1) / (x^6-10*x^3+1). - Colin Barker, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Nov 26 2012

A204521 Square root of floor(A055812(n) / 5).

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 8, 21, 55, 72, 144, 377, 987, 1292, 2584, 6765, 17711, 23184, 46368, 121393, 317811, 416020, 832040, 2178309, 5702887, 7465176
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square yields another square when written in base 5.
(For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0.)
Base-5 analog of A031150 [base 10], A001353 [base 3], A001542 [base 2].
The square roots of A055812 are listed in A204520.

Crossrefs

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(sqrtint(n^2\b),","))

Formula

Empirical g.f.: x^4*(x^5+3*x^4+8*x^3+4*x^2+3*x+1) / ((x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Sep 15 2014

A256944 Squares which are not the sums of two consecutive nonsquares.

Original entry on oeis.org

0, 1, 4, 9, 16, 36, 49, 64, 100, 144, 196, 256, 289, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1681, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 25 2015

Keywords

Comments

The union of A008843, A055792, and A016742. [Corrected by Charles R Greathouse IV, May 07 2015]
Consists of the squares of all even numbers and odd numbers in A078057 = (1, 3, 7, 17, 41, 99, ...), see also A001333 = abs(A123335). See A257282 for the square roots and A257292 for their complement in the nonnegative integers A001477. - M. F. Hasler, May 08 2015

Examples

			0, 1, 4, 9, 16, 36, are in this sequence because first 14 sums of two consecutive nonsquares are 5, 8, 11, 13, 15, 18, 21, 23, 25, 27, 29, 32, 35, 37.
		

Crossrefs

Programs

  • Mathematica
    lim = 15000; s = Plus @@@ (Partition[#, 2, 1] & @ Complement[Range@ lim, Range[Floor@ Sqrt[lim]]^2]); Select[Range@ Floor[Sqrt[lim]]^2, !MemberQ[s, #] &] (* Michael De Vlieger, Apr 29 2015 *)
    lst=Partition[Select[Range[0,10^6],!IntegerQ[Sqrt[#]]&],2,1]/.{a_,b_}->  a+b;a256944=Complement[Table[n^2,{n,0,Sqrt[Last[lst]]}],lst] (* timing improved by Ivan N. Ianakiev, Apr 30 2015 *)
    Union[#, Range[0, Max@ #, 2]] &@ Numerator[Convergents[Sqrt@ 2, 6]]^2 (* Michael De Vlieger, Aug 06 2016, after Harvey P. Dale at A001333 *)
  • PARI
    is(n)=issquare(n) && (n%2==0 || issquare(n\2) || issquare(n\2+1)) \\ Charles R Greathouse IV, May 07 2015

Formula

a(n) ~ 4n^2. - Charles R Greathouse IV, May 07 2015
a(n) = A257282(n)^2. - M. F. Hasler, May 08 2015

A204504 A204512(n)^2 = floor[A055872(n)/8]: Squares such that appending some digit in base 8 yields another square.

Original entry on oeis.org

0, 0, 0, 1, 4, 36, 144, 1225, 4900, 41616, 166464, 1413721, 5654884, 48024900, 192099600, 1631432881, 6525731524, 55420693056, 221682772224, 1882672131025, 7530688524100, 63955431761796, 255821727047184, 2172602007770041, 8690408031080164, 73804512832419600
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-8 analog of A202303.

Crossrefs

See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9),
A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7),
A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5),
A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3),
A001541=sqrt(A055792) (base 2).

Programs

  • PARI
    b=8;for(n=1,2e9,issquare(n^2\b) & print1((n^2\b)","))
    
  • PARI
    a(n)=polcoeff(x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6+O(x^n)), n)

Formula

a(n)=A204512(n)^2.
G.f. = x^4*(1 + 4*x + x^2 + 4*x^3)/(1 - 35*x^2 + 35*x^4 - x^6)

A075127 Safe perfect powers: perfect powers n such that (n-1)/2 is also a perfect power.

Original entry on oeis.org

9, 243, 289, 9801, 332929, 11309769, 384199201, 13051463049, 443365544449, 15061377048201, 511643454094369, 17380816062160329, 590436102659356801, 20057446674355970889, 681362750825443653409
Offset: 1

Views

Author

Zak Seidov, Oct 11 2002

Keywords

Comments

If both powers are squares, the smaller square is a triangular number, and all square triangular numbers (A001110) correspond to a member in this sequence. This proves that this sequence is infinite. Are there only finitely many other members, i.e., is A075127 \ A055792 finite? - Charles R Greathouse IV, Dec 12 2010

Crossrefs

Programs

  • Mathematica
    pp = Select[ Range[10^8], Apply[ GCD, Last[ Transpose[ FactorInteger[ # ]]]] > 1 & ]; Select[pp, Apply[GCD, Last[ Transpose[ FactorInteger[( # - 1)/2]]]] > 1 & ]
  • PARI
    for(n=1, 1e10, if(ispower(n) && ispower((n-1)/2), print1(n, ", "))) \\ Altug Alkan, Oct 28 2015

Formula

Conjectures from Colin Barker, Oct 28 2015: (Start)
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3) for n>5.
G.f.: x*(234*x^4-8182*x^3+7901*x^2+72*x-9) / ((x-1)*(x^2-34*x+1)).
(End)

Extensions

One more term from Robert G. Wilson v, Oct 16 2002
a(7)-a(15) from Donovan Johnson, Mar 10 2010
Previous Showing 21-30 of 36 results. Next