cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A056567 Fibonomial coefficients.

Original entry on oeis.org

1, 55, 4895, 352440, 27372840, 2063912136, 157373300370, 11948265189630, 908637119420910, 69056421075989160, 5249543573067466872, 399024295188779925720, 30331388438447118520355, 2305576054220330112077285, 175254358052498673797874685, 13321629629800423781409595728
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Crossrefs

Cf. A010048, A000045, A001654-8, A056565-6, A001076 (signed), A049666, A049667 (signed), A049669.

Programs

  • Mathematica
    a[n_] := (1/2227680) Times @@ Fibonacci[n + Range[9]]; Array[a, 20, 0] (* Giovanni Resta, May 08 2016 *)
  • PARI
    b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
    vector(20, n, b(n-1, 9))  \\ Joerg Arndt, May 08 2016

Formula

a(n) = A010048(n+9, 9) = Fibonomial(n+9, 9).
G.f.: 1/p(10, n) with p(10, n)= 1 - 55*x - 1870*x^2 + 19635*x^3 + 85085*x^4 - 136136*x^5 - 85085*x^6 + 19635*x^7 + 1870*x^8 - 55*x^9 - x^10 = (1 - x - x^2)*(1 + 4*x - x^2)*(1 - 11*x - x^2)*(1 + 29*x - x^2)*(1 - 76*x - x^2) (n=10 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
Recursion: a(n) = 76*a(n-1) + a(n-2)+((-1)^n)*A056565(n), n >= 2, a(0)=1, a(1)=55.
G.f.: exp( Sum_{k>=1} F(10*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

A056586 Ninth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^9, F(n)=A000045(n).
G.f.: x*p(9, x)/q(9, x) with p(9, x) := sum_{m=0..8} A056588(8, m)*x^m = 1 - 54*x - 1413*x^2 + 9288*x^3 + 17840*x^4 - 9288*x^5 - 1413*x^6 + 54*x^7 + x^8 and q(9, x) := sum_{m=0..10} A055870(10, m)*x^m = (1 - x - x^2)*(1 + 4*x - x^2)*(1 - 11*x - x^2)*(1 + 29*x - x^2)*(1 - 76*x - x^2) (factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..10} A055870(10, m)*a(n-m) = 0, n >= 10; inputs: a(n), n=0..9. a(n) = 55*a(n-1) + 1870*a(n-2) - 19635*a(n-3) - 85085*a(n-4) + 136136*a(n-5) + 85085*a(n-6) - 19635*a(n-7) - 1870*a(n-8) + 55*a(n-9) + a(n-10).

A383715 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^floor((k+1)/2) * A099927(n,k).

Original entry on oeis.org

1, 1, -1, 1, -2, -1, 1, -5, -5, 1, 1, -12, -30, 12, 1, 1, -29, -174, 174, 29, -1, 1, -70, -1015, 2436, 1015, -70, -1, 1, -169, -5915, 34307, 34307, -5915, -169, 1, 1, -408, -34476, 482664, 1166438, -482664, -34476, 408, 1, 1, -985, -200940, 6791772, 39618670, -39618670, -6791772, 200940, 985, -1
Offset: 0

Views

Author

Seiichi Manyama, May 07 2025

Keywords

Examples

			Triangle starts:
  1;
  1,   -1;
  1,   -2,    -1;
  1,   -5,    -5,     1;
  1,  -12,   -30,    12,     1;
  1,  -29,  -174,   174,    29,    -1;
  1,  -70, -1015,  2436,  1015,   -70,   -1;
  1, -169, -5915, 34307, 34307, -5915, -169, 1;
  ...
		

Crossrefs

Programs

  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    p(n, k) = prod(j=0, k-1, pell(n-j));
    a099927(n, k) = p(n, k)/p(k, k);
    T(n, k) = (-1)^((k+1)\2)*a099927(n, k);

Formula

Let f(n, x) be defined as f(n, x) = Sum_{k=0..n} T(n,k) * x^k.
f(n, x) = exp( -Sum_{k>=1} Pell(n*k)/Pell(k) * x^k/k ).
Sum_{k>=0} A099927(n+k,n) * x^k = 1/f(n+1, x).

A056568 Fibonomial coefficients.

Original entry on oeis.org

1, 89, 12816, 1493064, 187628376, 22890661872, 2824135408458, 346934172869802, 42689423937884208, 5249543573067466872, 645693859487298425256, 79413089729752455762384, 9767258556969762111163771, 1201288963378036364032704659, 147748983166877427393815516256
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Crossrefs

Cf. A010048, A000045, A001654-8, A056565-7, A001906, A004187 (signed), A049660, A049668 (signed), A049670.

Programs

  • Magma
    [&*[Fibonacci(n+i): i in [0..9]]/122522400: n in [1..15]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    F:= combinat[fibonacci]: a:= n-> mul(F(n+i), i=0..9)/122522400: seq(a(n), n=1..18); # Zerinvary Lajos, Oct 07 2007
    a:= n-> (Matrix(11, (i,j)-> if (i=j-1) then 1 elif j=1 then [1514513, -582505, -83215, 4895, 89, -1][abs(i-11/2)+1/2] else 0 fi)^n)[1, 1]; seq(a(n), n=0..18);  # Alois P. Heinz, Aug 15 2008
  • Mathematica
    Times@@@Partition[Fibonacci[Range[30]],10,1]/122522400 (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    a(n)=prod(k=0,9,fibonacci(n+k))/122522400; \\ Joerg Arndt, Oct 31 2014

Formula

a(n) = A010048(n+10,10) =: Fibonomial(n+10,10).
G.f.: 1/p(11,n) with p(11,n) = 1-89*x -4895*x^2 +83215*x^3 +582505*x^4 -1514513*x^5 -1514513*x^6 +582505*x^7 +83215*x^8 -4895*x^9 -89*x^10 +x^11 = (1+x) *(1-3*x+x^2) *(1+7*x+x^2) *(1-18*x+x^2) *(1+47*x+x^2) *(1-123*x+x^2) (n=8 row polynomial of signed Fibonomial triangle A055870; see this entry for Knuth and Riordan references).
Recursion: a(n)=123*a(n-1)-a(n-2)+((-1)^n)*A056566(n), n >= 2, a(0)=1, a(1)=89.
G.f.: exp( Sum_{k>=1} F(11*k)/F(k) * x^k/k ), where F(n) = A000045(n). - Seiichi Manyama, May 07 2025

A056587 Tenth power of Fibonacci numbers A000045.

Original entry on oeis.org

0, 1, 1, 1024, 59049, 9765625, 1073741824, 137858491849, 16679880978201, 2064377754059776, 253295162119140625, 31181719929966183601, 3833759992447475122176, 471584161164422542970449
Offset: 0

Views

Author

Wolfdieter Lang, Jul 10 2000

Keywords

Comments

Divisibility sequence; that is, if n divides m, then a(n) divides a(m).

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).

Crossrefs

Programs

Formula

a(n) = F(n)^10, F(n)=A000045(n).
G.f.: x*p(10, x)/q(10, x) with p(10, x) := sum_{m=0..9} A056588(9, m)*x^m = (1-x)*(1 - 87*x - 4047*x^2 + 42186*x^3 + 205690*x^4 + 42186*x^5 - 4047*x^6 - 87*x^7 + x^8) and q(10, x) := sum_{m=0..11} A055870(11, m)*x^m = (1+x)*(1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2)*(1 + 47*x + x^2)*(1 - 123*x + x^2) (denominator factorization deduced from Riordan result).
Recursion (cf. Knuth's exercise): sum_{m=0..11} A055870(11, m)*a(n-m) = 0, n >= 11; inputs: a(n), n=0..10. a(n) = 89*a(n-1) + 4895*a(n-2) - 83215*a(n-3) - 582505*a(n-4) + 1514513*a(n-5) + 1514513*a(n-6) - 582505*a(n-7) -83215*a(n-8) + 4895*a(n-9) + 89*a(n-10) - a(n-11).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001

A156133 Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).

Original entry on oeis.org

1, -1, 1, 1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -4, -19, -4, 1, -1, 8, 40, -60, -40, 8, 1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -33, -747, 3894, 16270, 3894, -747, -33, 1, -1, 55, 1870, -19635, -85085, 136136, 85085
Offset: 0

Views

Author

Roger L. Bagula, Feb 04 2009

Keywords

Comments

Row sums are:
{1, 1, -2, -4, -25, -44, 288, 1276, 22500, 96976, -1707552,...}.
The denominator and numerator polynomials appear to be new.

Examples

			{1},
{-1, 1, 1},
{1, -2, -2, 1},
{1, -3, -6, 3, 1},
{1, -4, -19, -4, 1},
{-1, 8, 40, -60, -40, 8, 1},
{1, -13, -104, 260, 260, -104, -13, 1},
{1, -21, -273, 1092, 1820, -1092, -273, 21, 1},
{1, -33, -747, 3894, 16270, 3894, -747, -33, 1},
{-1, 55, 1870, -19635, -85085, 136136, 85085, -19635, -1870, 55, 1},
{1, -89, -4895, 83215, 582505, -1514513, -1514513, 582505, 83215, -4895, -89, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[t0, p, x, n, m];
    p[x_, n_] = (1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]
    Table[Denominator[FullSimplify[ExpandAll[p[x, n]]]], {n, 0, 10}];
    Flatten[%]

Formula

p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).

A317360 Triangle a(n, k) read by rows: coefficient triangle that gives Lucas powers and sums of Lucas powers.

Original entry on oeis.org

1, 1, 2, 1, 7, -4, 1, 24, -23, -8, 1, 76, -164, -79, 16, 1, 235, -960, -1045, 255, 32, 1, 716, -5485, -11155, 5940, 831, -64, 1, 2166, -29816, -116480, 109960, 32778, -2687, -128, 1, 6527, -158252, -1143336, 2024920, 1029844, -176257, -8703, 256, 1, 19628, -822291, -10851888, 34850816, 32711632, -9230829, -937812, 28159, 512
Offset: 0

Views

Author

Tony Foster III, Jul 26 2018

Keywords

Examples

			n\k|  0  1      2       3        4       5         6        7      8     9
---+-------------------------------------------------------------------------
0  |  1
1  |  1  2
2  |  1  7     -4
3  |  1  24    -23     -8
4  |  1  76    -164    -79       16
5  |  1  235   -960    -1045     255     32
6  |  1  716   -5485   -11155    5940    831      -64
7  |  1  2166  -29816  -116480   109960  32778    -2687    -128
8  |  1  6527  -158252 -1143336  2024920 1029844  -176257  -8703   256
9  |  1  19628 -822291 -10851888 4850816 32711632 -9230829 -937812 28159 512
		

Crossrefs

Programs

  • PARI
    lucas(p)=2*fibonacci(p+1)-fibonacci(p);
    S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
    T(n, k) = sum(j=0, k, lucas(k+1-j)^n * S(n+1, j));
    tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
    tabl(9);

Formula

a(n, k) = Sum_{j=0..k} Lucas(k+1-j)^n * A055870(n+1, j).
Sum_{j=0..n} a(n, n-j) * A010048(k-1+j, n) = Lucas(k)^n.
Sum_{j=0..n} a(n, n-j) * A305695(k-2+j, n-1) = Sum_{t=1..k} Lucas(t)^n.
Previous Showing 21-27 of 27 results.