A056567
Fibonomial coefficients.
Original entry on oeis.org
1, 55, 4895, 352440, 27372840, 2063912136, 157373300370, 11948265189630, 908637119420910, 69056421075989160, 5249543573067466872, 399024295188779925720, 30331388438447118520355, 2305576054220330112077285, 175254358052498673797874685, 13321629629800423781409595728
Offset: 0
-
a[n_] := (1/2227680) Times @@ Fibonacci[n + Range[9]]; Array[a, 20, 0] (* Giovanni Resta, May 08 2016 *)
-
b(n, k)=prod(j=1, k, fibonacci(n+j)/fibonacci(j));
vector(20, n, b(n-1, 9)) \\ Joerg Arndt, May 08 2016
A056586
Ninth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 512, 19683, 1953125, 134217728, 10604499373, 794280046581, 60716992766464, 4605366583984375, 350356403707485209, 26623333280885243904, 2023966356928852115753, 153841020405122283630137
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..101
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (55,1870,-19635,-85085,136136,85085,-19635,-1870,55,1).
A383715
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^floor((k+1)/2) * A099927(n,k).
Original entry on oeis.org
1, 1, -1, 1, -2, -1, 1, -5, -5, 1, 1, -12, -30, 12, 1, 1, -29, -174, 174, 29, -1, 1, -70, -1015, 2436, 1015, -70, -1, 1, -169, -5915, 34307, 34307, -5915, -169, 1, 1, -408, -34476, 482664, 1166438, -482664, -34476, 408, 1, 1, -985, -200940, 6791772, 39618670, -39618670, -6791772, 200940, 985, -1
Offset: 0
Triangle starts:
1;
1, -1;
1, -2, -1;
1, -5, -5, 1;
1, -12, -30, 12, 1;
1, -29, -174, 174, 29, -1;
1, -70, -1015, 2436, 1015, -70, -1;
1, -169, -5915, 34307, 34307, -5915, -169, 1;
...
-
pell(n) = ([2, 1; 1, 0]^n)[2, 1];
p(n, k) = prod(j=0, k-1, pell(n-j));
a099927(n, k) = p(n, k)/p(k, k);
T(n, k) = (-1)^((k+1)\2)*a099927(n, k);
A056568
Fibonomial coefficients.
Original entry on oeis.org
1, 89, 12816, 1493064, 187628376, 22890661872, 2824135408458, 346934172869802, 42689423937884208, 5249543573067466872, 645693859487298425256, 79413089729752455762384, 9767258556969762111163771, 1201288963378036364032704659, 147748983166877427393815516256
Offset: 0
-
[&*[Fibonacci(n+i): i in [0..9]]/122522400: n in [1..15]]; // Vincenzo Librandi, Oct 31 2014
-
F:= combinat[fibonacci]: a:= n-> mul(F(n+i), i=0..9)/122522400: seq(a(n), n=1..18); # Zerinvary Lajos, Oct 07 2007
a:= n-> (Matrix(11, (i,j)-> if (i=j-1) then 1 elif j=1 then [1514513, -582505, -83215, 4895, 89, -1][abs(i-11/2)+1/2] else 0 fi)^n)[1, 1]; seq(a(n), n=0..18); # Alois P. Heinz, Aug 15 2008
-
Times@@@Partition[Fibonacci[Range[30]],10,1]/122522400 (* Harvey P. Dale, Jul 27 2019 *)
-
a(n)=prod(k=0,9,fibonacci(n+k))/122522400; \\ Joerg Arndt, Oct 31 2014
A056587
Tenth power of Fibonacci numbers A000045.
Original entry on oeis.org
0, 1, 1, 1024, 59049, 9765625, 1073741824, 137858491849, 16679880978201, 2064377754059776, 253295162119140625, 31181719929966183601, 3833759992447475122176, 471584161164422542970449
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 1, p. 85, (exercise 1.2.8. Nr. 30) and p. 492 (solution).
- Vincenzo Librandi, Table of n, a(n) for n = 0..96
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- J. Riordan, Generating functions for powers of Fibonacci numbers, Duke. Math. J. 29 (1962) 5-12.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (89,4895,-83215,-582505,1514513,1514513,-582505,-83215,4895,89,-1).
Cf.
A000045,
A007598,
A056570,
A056571,
A056572,
A056573,
A056574,
A056585,
A056586,
A056588,
A055870.
More terms from Larry Reeves (larryr(AT)acm.org), Jul 17 2001
A156133
Denominator coefficients of infinite over the Fibonacci sequence: p(x,n)=(1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]; t(n,m)=Coefficients(Denominator(p(x,n)).
Original entry on oeis.org
1, -1, 1, 1, 1, -2, -2, 1, 1, -3, -6, 3, 1, 1, -4, -19, -4, 1, -1, 8, 40, -60, -40, 8, 1, 1, -13, -104, 260, 260, -104, -13, 1, 1, -21, -273, 1092, 1820, -1092, -273, 21, 1, 1, -33, -747, 3894, 16270, 3894, -747, -33, 1, -1, 55, 1870, -19635, -85085, 136136, 85085
Offset: 0
{1},
{-1, 1, 1},
{1, -2, -2, 1},
{1, -3, -6, 3, 1},
{1, -4, -19, -4, 1},
{-1, 8, 40, -60, -40, 8, 1},
{1, -13, -104, 260, 260, -104, -13, 1},
{1, -21, -273, 1092, 1820, -1092, -273, 21, 1},
{1, -33, -747, 3894, 16270, 3894, -747, -33, 1},
{-1, 55, 1870, -19635, -85085, 136136, 85085, -19635, -1870, 55, 1},
{1, -89, -4895, 83215, 582505, -1514513, -1514513, 582505, 83215, -4895, -89, 1}
-
Clear[t0, p, x, n, m];
p[x_, n_] = (1 - x)*Sum[Fibonacci[k]^n*x^k, {k, 0, Infinity}]
Table[Denominator[FullSimplify[ExpandAll[p[x, n]]]], {n, 0, 10}];
Flatten[%]
A317360
Triangle a(n, k) read by rows: coefficient triangle that gives Lucas powers and sums of Lucas powers.
Original entry on oeis.org
1, 1, 2, 1, 7, -4, 1, 24, -23, -8, 1, 76, -164, -79, 16, 1, 235, -960, -1045, 255, 32, 1, 716, -5485, -11155, 5940, 831, -64, 1, 2166, -29816, -116480, 109960, 32778, -2687, -128, 1, 6527, -158252, -1143336, 2024920, 1029844, -176257, -8703, 256, 1, 19628, -822291, -10851888, 34850816, 32711632, -9230829, -937812, 28159, 512
Offset: 0
n\k| 0 1 2 3 4 5 6 7 8 9
---+-------------------------------------------------------------------------
0 | 1
1 | 1 2
2 | 1 7 -4
3 | 1 24 -23 -8
4 | 1 76 -164 -79 16
5 | 1 235 -960 -1045 255 32
6 | 1 716 -5485 -11155 5940 831 -64
7 | 1 2166 -29816 -116480 109960 32778 -2687 -128
8 | 1 6527 -158252 -1143336 2024920 1029844 -176257 -8703 256
9 | 1 19628 -822291 -10851888 4850816 32711632 -9230829 -937812 28159 512
-
lucas(p)=2*fibonacci(p+1)-fibonacci(p);
S(n, k) = (-1)^floor((k+1)/2)*(prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j)));
T(n, k) = sum(j=0, k, lucas(k+1-j)^n * S(n+1, j));
tabl(m) = for (n=0, m, for (k=0, n, print1(T(n, k), ", ")); print);
tabl(9);
Comments