cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 146 results. Next

A327495 a(n) = numerator( Sum_{j=0..n} (j!/(2^j*floor(j/2)!)^2)^2 ).

Original entry on oeis.org

1, 17, 69, 1113, 17817, 285297, 1141213, 18260633, 1168681737, 18699007017, 74796032037, 1196736992841, 19147791938817, 306364680039081, 1225458720340365, 19607339566855065, 5019478929156305865, 80311662878468159865, 321246651514020383485, 5139946424277661728785
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Comments

This sequence is a variant of the Landau constants when the normalized central binomial is replaced by the normalized swinging factorial.
(1) A277233(n)/4^A005187(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2 with the normalized central binomial
g(n) = (2*n)! / (2^n*n!)^2 = A001790(n)/A046161(n).
(2) A327495(n)/4^A327492(n) are the rationals considered here. These numbers are defined as H(n) = Sum_{j=0..n} h(j)^2 with the normalized swinging factorial
h(n) = n! / (2^n*floor(n/2)!)^2 = A163590(n)/A327493(n).
(3) In particular, this means that we have the pure integer representations
A277233(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2;
A327495(n) = Sum_{k=0..n}(A163590(k)*(2^(A327492(n) - A327492(k))))^2.
(4) A163590 is the odd part of the swinging factorial and A001790 is the odd part of the swinging factorial at even indices (see a comment from Aug 01 2009 in A001790). Similarly, A327493(2n)=A046161(2n) and A327493(2n+1) = 2*A046161(2n+1).
(5) A005187 are the partial sums of A001511, the 2-adic valuation of 2n, and A327492 are the partial sums of A327491.

Examples

			r(n) = 1, 17/16, 69/64, 1113/1024, 17817/16384, 285297/262144, 1141213/1048576, 18260633/16777216, ...
		

Crossrefs

Programs

  • Maple
    A327495 := n -> numer(add(j!^2/(2^j*iquo(j,2)!)^4, j=0..n)):
    seq(A327495(n), n=0..19);
  • PARI
    a(n)={ numerator(sum(j=0, n, (j!/(2^j*(j\2)!)^2)^2 )) } \\ Andrew Howroyd, Sep 28 2019

Formula

Denominator(r(n)) = 4^A327492(n) = A327493(n)^2 = A327496(n).
a(n) = Sum_{k=0..n} (A163590(k)*(2^(A327492(n) - A327492(k))))^2.

A163872 Inverse binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457).

Original entry on oeis.org

1, 5, 19, 67, 227, 751, 2445, 7869, 25107, 79567, 250793, 786985, 2460397, 7667921, 23832931, 73902627, 228692115, 706407903, 2178511449, 6708684009, 20632428249, 63380014845, 194486530791, 596213956023, 1826103432573, 5588435470401, 17089296473655
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

Also a(n) = sum {i=0..n} (-1)^(n-i) binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).

Crossrefs

Cf. A163772.

Programs

  • Maple
    a := proc(n) local i; add((-1)^(n-i)*binomial(n,i)/Beta(i+1,i+1),i=0..n) end:
    seq(simplify((-1)^n*hypergeom([-n,3/2], [1], 4)),n=0..26); # Peter Luschny, Apr 26 2016
  • Mathematica
    CoefficientList[Series[Sqrt[x+1]/(1-3*x)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[(-1)^(n-i)*Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 26 2013 *)

Formula

O.g.f.: A(x)=1/(1-x*M(x))^3, M(x) - o.g.f. of A001006. a(n) = sum(k^3/n *sum(C(n,j)*C(j,2*j-n-k), j=0..n), k=1..n). - Vladimir Kruchinin, Sep 06 2010
Recurrence: n*a(n) = (2*n+3)*a(n-1) + 3*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 21 2012
a(n) ~ 4*3^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Oct 21 2012
a(n) = (-1)^n*hypergeom([-n,3/2], [1], 4). - Peter Luschny, Apr 26 2016
From Seiichi Manyama, Aug 22 2025: (Start)
a(n) = (-1/4)^n * Sum_{k=0..n} (-3)^k * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k)/(1-2*(n-k)).
a(n) = Sum_{k=0..n} (-1)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 3^(n-k) * binomial(2*k,k)/(1-2*k) * binomial(n,n-k). (End)

A181860 a(n) = lcm(n^2, swinging_factorial(n)).

Original entry on oeis.org

0, 1, 4, 18, 48, 150, 180, 980, 2240, 5670, 6300, 30492, 11088, 156156, 168168, 257400, 1647360, 3719430, 3938220, 17551820, 18475600, 81477396, 85357272, 373173528, 389398464, 1690097500, 1757701400, 7582037400, 3931426800, 33738060600
Offset: 0

Views

Author

Peter Luschny, Nov 21 2010

Keywords

Crossrefs

Programs

  • Maple
    A181860 := n -> ilcm(n^2,n!/iquo(n,2)!^2);
  • Mathematica
    Join[{0},sf[n_]:=n!/Quotient[n, 2]!^2; a[n_]:=LCM[n^2, sf[n]]; Table[a[n], {n, 30}] ] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    a(n) = lcm(n^2, n!/(n\2)!^2); \\ Michel Marcus, Mar 06 2018

Formula

a(n) = lcm(A000290(n), A056040(n)).

Extensions

a(26)-a(29) from Vincenzo Librandi, Mar 05 2018

A189911 Row sums of the extended Catalan triangle A189231.

Original entry on oeis.org

1, 2, 4, 9, 18, 40, 80, 175, 350, 756, 1512, 3234, 6468, 13728, 27456, 57915, 115830, 243100, 486200, 1016158, 2032316, 4232592, 8465184, 17577014, 35154028, 72804200, 145608400, 300874500, 601749000, 1240940160, 2481880320, 5109183315, 10218366630
Offset: 0

Views

Author

Peter Luschny, May 01 2011

Keywords

Crossrefs

Programs

  • Maple
    A189911 := proc(n) local a,b,d; if n = 0 then 1 else
    a := GAMMA(n-floor(n/2)); b := GAMMA(floor(n/2+3/2));
    d := GAMMA(floor(n/2+1))^2; GAMMA(n+1)*(a*b+d)/(a*b*d) fi end: seq(A189911(n),n=0..32);
    A189911 := proc(n) h:=irem(n,2); g:=iquo(n,2); (g+h+1)*binomial(2*g+h,g+h) end; # Peter Luschny, Oct 24 2013
  • Mathematica
    a[n_] := Module[{q, r}, {q, r} = QuotientRemainder[n, 2]; (q+r+1)*Pochhammer[q+1, q+r]/(q+r)!]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jan 09 2014 *)
  • Sage
    def A189911():
        r, n = 1, 1
        while True:
            yield r
            h = n//2
            r *= 2 if is_even(n) else (h+2)*(2*h+1)/(h+1)^2
            n += 1
    a = A189911(); [next(a) for i in range(16)]  # Peter Luschny, Oct 24 2013

Formula

Let a = Gamma(n-floor(n/2)), b = Gamma(floor(n/2+3/2)), d = Gamma( floor(n/2+1))^2, c = Gamma(n+1). Then a(n) = c*(a*b+d)/(a*b*d).
a(n) = A162246(n,n) + A162246(n,n+1) for n > 0.
From Peter Luschny, Oct 24 2013 : (Start)
E.g.f.: (x+1)*(BesselI(0, 2*x)+BesselI(1, 2*x)).
O.g.f.: I*(2*x^2-1)/(2*sqrt(2*x+1)*x*(2*x-1)^(3/2))-1/(2*x).
Recurrence: a(0) = 1; a(n) = a(n-1)*2 if n is even else ([n/2]+2)*(2*[n/2]+1)/([n/2]+1)^2. ([.] the floor brackets.)
a(n) = A056040(n) + A212303(n) = n$*(1+[(n+1)/2]^((-1)^n)), where n$ is the swinging factorial.
a(2*n) = (n+1)*C(2*n, n) (A037965);
a(2*n+1) = (n+2)*C(2*n+1, n+1) (A097070). (End)
Sum_{n>=0} 1/a(n) = 4*Pi/sqrt(3) - Pi^2/3 - 2. - Amiram Eldar, Aug 20 2022
D-finite with recurrence: (n-2)*(n+1)^2*a(n) - (2*(n-2)^2+2*n-12)*a(n-1) - 4*(n+2)*(n-1)^2*a(n-2) = 0. - Georg Fischer, Nov 25 2022

A356637 a(n) = A000265(A263931(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 9, 3, 3, 45, 5, 1, 21, 7, 175, 675, 45, 45, 1485, 5775, 5775, 45045, 2145, 195, 8775, 2925, 5733, 22491, 833, 6545, 373065, 24871, 24871, 1566873, 3086265, 181545, 357903, 39767, 39767, 156975, 309925, 61985, 5020785, 239085, 20322225, 160730325
Offset: 0

Views

Author

Peter Luschny, Sep 07 2022

Keywords

Comments

Let n >= 5. If a(n) is squarefree, then 2 divides binomial(2*n, n) more than once and is the only prime that does so. There is only a finite number of such cases (see A059097).
An efficient algorithm for the calculation is available, which is based on prime factorization. See the SageMath implementation. The main application is the efficient calculation of the central binomial coefficient, which is the product of this sequence, the Glaisher/Gould sequence, and the upper primorial function (see the formula section).
Since the central binomial coefficient is a bisection of the swinging factorial A056040, and the swinging factorial, in turn, is the building block for an efficient algorithm for the computation of the factorial function, the terms of this sequence occur as factors in all these computations. See the links for details.

Examples

			Let n = 22 and consider the prime factorization of m = binomial(2*n, n):
2^3 * [3 * 5 * 13] * 23 * 29 * 31 * 37 * 41 * 43. Then a(22) = 3 * 5 * 13. This is what is left after the 'prime tail' A261130(n) and the 'prime head' A006519(m) = A001316(n) have been cut off.
		

Crossrefs

Programs

  • Maple
    A263931 := n -> binomial(2*n, n) / convert(select(isprime, {$n+1..2*n}), `*`):
    A000265 := n -> n / 2^padic[ordp](n, 2):
    seq(A000265(A263931(n)), n = 0..45);
  • SageMath
    def A356637(n: int) -> int:
        m = 2 * n
        if m < 5: return 1
        sqrtm = isqrt(m) + 1
        R = prime_range(sqrtm, m // 3 + 1)
        factors = [x for x in R if is_odd(m // x)]
        for prime in prime_range(3, sqrtm):
            p: int = 1
            q: int = m
            while True:
                q //= prime
                if q == 0:
                    break
                if q & 1 == 1:
                    p *= prime
            if p > 1:
                factors.append(p)
        return product(factors)
    print([A356637(n) for n in range(45)])

Formula

A000984(n) = a(n) * A001316(n) * A261130(n) for n >= 2.

A163774 Row sums of the central coefficients triangle (A163771).

Original entry on oeis.org

1, 3, 13, 51, 201, 783, 3039, 11763, 45481, 175803, 679779, 2630367, 10187659, 39500373, 153329913, 595883763, 2318471289, 9030982491, 35216266947, 137469149451, 537152523711, 2100857828193, 8223917499477, 32219655346719, 126328429601451, 495676719721953, 1946227355491909
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Crossrefs

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n) local i,k; add(add((-1)^(n-i)*binomial(n-k,n-i)*swing(2*i),i=k..n), k=0..n) end:
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[Sum[t[n, k], {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 04 2017 *)

Formula

a(n) = Sum_{k=0..n} Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i)$, where i$ denotes the swinging factorial of i (A056040).
Conjecture: a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n+1,k)*binomial(2*k,k). - Werner Schulte, Nov 17 2015

Extensions

More terms from Michel Marcus, Nov 24 2015

A181861 a(n) = gcd(n^2, n!/floor(n/2)!^2).

Original entry on oeis.org

1, 1, 2, 3, 2, 5, 4, 7, 2, 9, 4, 11, 12, 13, 4, 45, 2, 17, 4, 19, 4, 21, 4, 23, 4, 25, 4, 27, 8, 29, 180, 31, 2, 99, 4, 175, 12, 37, 4, 117, 20, 41, 12, 43, 8, 675, 4, 47, 36, 49, 4, 153, 8, 53, 4, 55, 56, 57, 4, 59, 16
Offset: 0

Views

Author

Peter Luschny, Nov 21 2010

Keywords

Crossrefs

Programs

  • Magma
    [Gcd(n^2, Floor(Factorial(n)/(Factorial(Floor(n/2))^2))):n in [0..60]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    A181861 := n -> igcd(n^2,n!/iquo(n,2)!^2);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; Table[GCD[n^2, sf[n]], {n, 0, 60}] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    a(n)=gcd(n!/(n\2)!^2,n^2) \\ Charles R Greathouse IV, Feb 01 2013
    

Formula

a(n) = gcd(A000290(n), A056040(n)).

A190909 Triangle read by rows: T(n,k) = binomial(n+k,n-k) * k! / floor(k/2)!^2.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 6, 1, 15, 70, 168, 54, 30, 1, 21, 140, 504, 270, 330, 20, 1, 28, 252, 1260, 990, 1980, 260, 140, 1, 36, 420, 2772, 2970, 8580, 1820, 2100, 70, 1, 45, 660, 5544, 7722, 30030, 9100, 16800, 1190, 630
Offset: 0

Views

Author

Peter Luschny, May 24 2011

Keywords

Comments

The triangle may be regarded as a generalization of the triangle A063007.
A063007(n,k) = binomial(n+k, n-k)*(2*k)$;
T(n,k) = binomial(n+k, n-k)*(k)$.
Here n$ denotes the swinging factorial A056040(n). As A063007 is a decomposition of the central Delannoy numbers A001850, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A056040(n) which can be seen as extended central binomial numbers.

Examples

			[0]  1
[1]  1,  1
[2]  1,  3,   2
[3]  1,  6,  10,    6
[4]  1, 10,  30,   42,   6
[5]  1, 15,  70,  168,  54,   30
[6]  1, 21, 140,  504, 270,  330,  20
[7]  1, 28, 252, 1260, 990, 1980, 260, 140
		

Crossrefs

Programs

  • Maple
    A190909 := (n,k) -> binomial(n+k,n-k)*k!/iquo(k,2)!^2:
    seq(print(seq(A190909(n,k),k=0..n)),n=0..7);
  • Mathematica
    Flatten[Table[Binomial[n+k,n-k] k!/(Floor[k/2]!)^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Mar 25 2012 *)

Formula

T(n,1) = A000217(n). T(n,2) = 2*binomial(n+2,4) (Cf. A034827).

A193282 a(n) = (n!/floor(n/2)!)^2.

Original entry on oeis.org

1, 1, 4, 36, 144, 3600, 14400, 705600, 2822400, 228614400, 914457600, 110649369600, 442597478400, 74798973849600, 299195895398400, 67319076464640000, 269276305858560000, 77820852393123840000, 311283409572495360000, 112373310855670824960000
Offset: 0

Views

Author

Peter Luschny, Sep 08 2011

Keywords

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(Floor(n/2)))^2: n in [0..20]]; // Vincenzo Librandi, Sep 11 2011
  • Maple
    A193282 := n -> (n!/iquo(n,2)!)^2;
  • Mathematica
    Table[(n!/(Floor[n/2]!))^2,{n,0,20}] (* Harvey P. Dale, Jul 30 2020 *)

Formula

a(n) = A056040(n)*A000142(n).
a(n) = A081125(n)^2.
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A195009(n,k).
a(n) = n!^2*[x^n] (1+x)*BesselI(0,2*x). Here [x^n]f(x) denotes the coefficient of x^n in f(x).
Conjecture: a(n) + 8*a(n-1) - 4*(n-2)*(n+2)*a(n-2) + 16*(-2*n^2 + 6*n - 3)*a(n-3) - 64*(n-3)^2*a(n-4) = 0. - R. J. Mathar, Oct 03 2014

A194588 a(n) = A189912(n-1)-a(n-1) for n>0, a(0) = 1; extended Riordan numbers.

Original entry on oeis.org

1, 0, 2, 2, 8, 17, 49, 128, 356, 983, 2759, 7779, 22087, 63000, 180478, 518846, 1496236, 4326383, 12539335, 36419069, 105971473, 308866226, 901573732, 2635235789, 7712078755, 22594899002, 66266698424, 194531585078, 571561286576, 1680679630089, 4945738222801
Offset: 0

Views

Author

Peter Luschny, Aug 30 2011

Keywords

Crossrefs

Programs

  • Maple
    A189912 := n -> add(n!/((n-k)!*iquo(k,2)!^2 *(iquo(k,2)+1)),k=0..n):
    A194588 := n -> `if`(n=0,1,A189912(n-1)-A194588(n-1)):
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(n-1)!/((n-k-1)!*Quotient[k, 2]!^2*(1 + Quotient[k, 2])), {k, 0, n-1}] - a[n-1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 30 2013 *)

Formula

a(n) = ((n+1) mod 2) + (1/2)*sum_{k=1..n}((-1)^k*binomial(n,k)*((k+1)/2)^(k mod 2)*(k+1)$+2*(-1)^n*(2*k)$/(k+1)), where n$ denotes the swinging factorial A056040(n).
Previous Showing 91-100 of 146 results. Next