A082905 Modified Pascal-triangle, read by rows. All C(n,j) binomial coefficients are replaced by C(n/g, j/g), where g = gcd(n,j).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 2, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 2, 3, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 4, 56, 2, 56, 4, 8, 1, 1, 9, 36, 3, 126, 126, 3, 36, 9, 1, 1, 10, 5, 120, 10, 2, 10, 120, 5, 10, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 12, 6, 4, 3, 792, 2, 792, 3, 4, 6, 12, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 2, 4, 1; 1, 5, 10, 10, 5, 1; 1, 6, 3, 2, 3, 6, 1; 1, 7, 21, 35, 35, 21, 7, 1; 1, 8, 4, 56, 2, 56, 4, 8, 1; 1, 9, 36, 3, 126, 126, 3, 36, 9, 1; 1, 10, 5, 120, 10, 2, 10, 120, 5, 10, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; else return Binomial(n/Gcd(n,k), k/Gcd(n,k)); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Aug 30 2019
-
Mathematica
Flatten[Table[Table[Binomial[n/GCD[n, j], j/GCD[n, j]], {j, 0, n}], {n, 1, 32}], 1]
-
PARI
T(n,k) = my(g=gcd(n,k)); if (!g, g=1); binomial(n/g, k/g); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", "))); \\ Michel Marcus, Aug 30 2019
-
Sage
def T(n,k): if k==0 or k==n: return 1 else: return binomial(n/gcd(n,k), k/gcd(n,k)) [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 30 2019
Extensions
More terms from Michel Marcus, Aug 30 2019
Comments