cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A253633 a(n) is the least positive integer b such that b^(2^n) + (b-1)^(2^n) is prime.

Original entry on oeis.org

2, 2, 2, 2, 2, 9, 96, 32, 86, 60, 1079, 755, 312, 3509, 1829, 49958, 22845
Offset: 0

Views

Author

Jeppe Stig Nielsen, Jan 07 2015

Keywords

Comments

When a(n) is 2, the corresponding prime is a Fermat prime, otherwise it is a so-called extended generalized Fermat prime sometimes denoted xGF(n, b, b-1) or similar.

Examples

			For n = 5, 2^5 = 32 is the exponent.  The numbers 1^32 + 0^32, 2^32 + 1^32, ..., 8^32 + 7^32 are not prime, but 9^32 + 8^32 is prime, so a(5) = 9. - _Michael B. Porter_, Mar 28 2018
		

Crossrefs

Programs

  • PARI
    a(n)=for(b=2,10^10,if(ispseudoprime(b^(2^n)+(b-1)^(2^n)),return(b)))

Formula

a(n) = A080208(n) + 1.

Extensions

a(13) from Jeppe Stig Nielsen, Mar 27 2018
a(14) found by Henri Lifchitz in 2007, from Jeppe Stig Nielsen, Apr 17 2018
a(15) found by Kellen Shenton, from Jeppe Stig Nielsen, Nov 27 2020
a(16) found by Kellen Shenton, from Jeppe Stig Nielsen, Mar 31 2021

A335805 Numbers b such that b^(2^i) + 1 is prime for i = 0...6.

Original entry on oeis.org

1, 2072005925466, 5082584069416, 12698082064890, 29990491969260, 46636691707050, 65081025897426, 83689703895606, 83953213480290, 105003537341346, 105699143244090, 107581715369910, 111370557491826, 111587899569066, 128282713771996, 133103004825210
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 14 2020

Keywords

Comments

Explicitly, for each b, the seven numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, and b^64+1 must be primes (generalized Fermat primes).
The first term greater than 1 such that b^(2^7) + 1 is also prime, is 240164550712338756, see A337364. - Jeppe Stig Nielsen, Aug 25 2020

Crossrefs

A337364 Numbers b such that b^(2^i) + 1 is prime for i = 0...7.

Original entry on oeis.org

1, 240164550712338756, 3686834112771042790, 6470860179642426900, 7529068955648085700, 10300630358100537120, 16776829808789151280, 17622040391833711780, 19344979062504927000, 23949099004395080026, 25348938242408650240, 30262840543567048476, 35628481193915651646
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 25 2020

Keywords

Comments

Explicitly, for each b, the eight numbers b+1, b^2+1, b^4+1, b^8+1, b^16+1, b^32+1, b^64+1, and b^128+1 must be primes (generalized Fermat primes).

Crossrefs

Extensions

a(10)-a(12) from Jeppe Stig Nielsen, Sep 04 2020
a(13) found by Rob Gahan added by Jeppe Stig Nielsen, Feb 15 2021

A070042 At these values of k the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

1068630, 1441590, 1867950, 3429300, 4084230, 5651730, 6322890, 6770610, 7158630, 7804830, 9437760, 9624270, 13625850, 23194860, 25848840, 26588520, 28714950, 29451840, 32984430, 33650580, 36500910, 38177130, 42856590, 49531020, 50016540, 50222070, 52083330, 54637590
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that C1(k) = k-1, C2(k) = k+1, C3(k) = k^2+k+1, C4(k) = k^2+1 and C5(k) = k^4+k^3+k^2+k+1 are all primes.

Examples

			For k = 1068630: the 1st, 2nd, 3rd, 4th and 5th cyclotomic polynomials give a quintet of primes: {1068629, 1068631, 1141971145531, 1141970076901, 1304096876879617162402531}.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1) && isprime(k^4+k^3+k^2+k+1) ; \\ Amiram Eldar, Sep 24 2024

Extensions

More terms from Don Reble, May 11 2002
a(24)-a(28) from Amiram Eldar, Sep 24 2024

A246121 Least k such that k^(6^n)*(k^(6^n) - 1) + 1 is prime.

Original entry on oeis.org

2, 3, 88, 28, 688, 7003, 1925
Offset: 0

Views

Author

Serge Batalov, Aug 14 2014

Keywords

Comments

Numbers of the form k^m*(k^m - 1) + 1 with m > 0, k > 1 may be primes only if m is 3-smooth, because these numbers are Phi(6,k^m) and cyclotomic factorizations apply to any prime divisors > 3. This sequence is a subset of A205506 with only m=6^n.
Numbers of this form are Generalized unique primes. a(6) generates a 306477-digit prime.

Examples

			When k = 88, k^72 - k^36 + 1 is prime. Since this isn't prime for k < 88, a(2) = 88.
		

Crossrefs

Programs

  • PARI
    a(n)=k=1; while(!ispseudoprime(k^(6^n)*(k^(6^n)-1)+1), k++); k
    n=0; while(n<100, print1(a(n), ", "); n++)

Formula

a(n) = A085398(6^(n+1)). - Jinyuan Wang, Jan 01 2023

Extensions

a(6) from Serge Batalov, Aug 15 2014

A228101 a(n) is the least k such that (2n)^(2^k) + 1 is a prime; a(n) = -1 if a prime (2n)^(2^k) + 1 is unknown, or = -2 if impossible.

Original entry on oeis.org

0, 0, 0, -2, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, -2, 2, 0, -1, 0, 0, 4, 0, 2, -1, 0, 1, 1, 0, 0, -1, -2, 0, -1, 0, 0, 1, 4, 0, 2, 0, 1, -1, 0, 1, -1, 1, 0, -1, 0, 0, -1, 0, 0, 1, 0, 5, 1, 2, 1, -1, 1, 0, -2, 0, 2, 1, 0, 0, 2, 2, -1, 1, 0, 0, 3, 2, 0, 4, 1, 0, 2, 0
Offset: 1

Views

Author

Yves Gallot (galloty(AT)wanadoo.fr) and Robert G. Wilson v, Aug 14 2013

Keywords

Comments

A prime number of the form b^(2^k) + 1 is called a generalized Fermat prime to base b.
See the hyperlink for more information and links.
The impossibility case, a(n) = -2, occurs exactly if 2n is a member of A070265. Or equivalently, n is in A126032. - Jeppe Stig Nielsen, Jul 02 2017

Crossrefs

Programs

  • Mathematica
    f[b_?EvenQ] := f[b] = Block[{k = 0}, While[! PrimeQ[b^(2^k) + 1], k++]; k];
    lst = {38, 50, 62, 68, 86, 92, 98, 104, 122, 144, 168, 182, 186, 200, 202, 212, 214, 218, 244, 246, 252, 258, 286, 294, 298, 302, 304, 308, 322, 324, 338, 344, 354, 356, 362, 368, 380, 390, 394, 398, 402, 404, 410, 416, 422, 424, 446, 450, 454, 458, 468, 480, 482, 484, 500, 514, 518, 524, 528, 530, 534, 538, 552, 558, 564, 572, 574, 578, 580, 590, 602, 604, 608, 620, 622, 626, 632, 638, 648, 650, 662, 666, 668, 670, 678, 684, 692, 694, 698, 706, 712, 720, 722, 724, 734, 744, 746, 752, 754, 762, 766, 770, 792, 794, 802, 806, 812, 814, 818, 836, 840, 842, 844, 848, 854, 868, 870, 872, 878, 888, 896, 902, 904, 908, 922, 924, 926, 932, 938, 942, 944, 948, 954, 958, 964, 968, 974, 978, 980, 988, 994, 998}; (f[#] = -1) & /@ lst;
    lst = {8, 32, 64, 128, 216, 512, 1000}; (f[#] = -2) & /@ lst; Table[ f[b], {b, 2, 1000, 2}]
    (* Second program: *)
    Module[{r = 83, nn = 12, s = {}, k}, Do[If[b > r, Break[], Do[If[Set[k, b^m/2] > r, Break[], AppendTo[s, k]], {m, 3, Infinity, 2}]], {b, 2, Infinity, 2}]; Table[If[MemberQ[s, n], -2, SelectFirst[Range[0, nn], PrimeQ[(2 n)^(2^#) + 1] &] /. x_ /; MissingQ@ x -> -1], {n, r}]] (* Michael De Vlieger, Jul 04 2017, Version 10.2 *)

Extensions

Definition rewritten by Jeppe Stig Nielsen, Jul 02 2017

A275530 Smallest positive integer m such that (m^(2^n) + 1)/2 is prime.

Original entry on oeis.org

3, 3, 3, 9, 3, 3, 3, 113, 331, 513, 827, 799, 3291, 5041, 71, 220221, 23891, 11559, 187503, 35963
Offset: 0

Views

Author

Walter Kehowski, Jul 31 2016

Keywords

Comments

The terms of this sequence with n > 11 correspond to probable primes which are too large to be proven prime currently. - Serge Batalov, Apr 01 2018
a(15) is a statistically significant outlier; the sequence (m^(2^15)+1)/2 may require a double-check with software that is not GWNUM-based. - Serge Batalov, Apr 01 2018

Examples

			a(7) = 113 since 113 is the smallest positive integer m such that (m^(2^7)+1)/2 is prime.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m; for m by 2
          while not isprime((m^(2^n)+1)/2) do od; m
        end:
    seq(a(n), n=0..8);
  • Mathematica
    Table[m = 1; While[! PrimeQ[(m^(2^n) + 1)/2], m++]; m, {n, 0, 9}] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    a(n) = {my(m = 1); while (! isprime((m^(2^n)+1)/2), m += 2); m;} \\ Michel Marcus, Aug 01 2016
    
  • Python
    from sympy import isprime
    def a(n):
      m, pow2 = 1, 2**n
      while True:
        if isprime((m**pow2 + 1)//2): return m
        m += 2
    print([a(n) for n in range(9)]) # Michael S. Branicky, Mar 03 2021

Extensions

a(13)-a(14) from Robert Price, Sep 23 2016
a(15) from Serge Batalov, Mar 29 2018
a(16) from Serge Batalov, Mar 30 2018
a(17) from Serge Batalov, Apr 01 2018
a(18)-a(19) from Ryan Propper, Aug 16 2022. These correspond to 1382288- and 2388581-digit PRPs, respectively, found using an exhaustive search with Jean Penne's LLR2.

A087738 Square array: T(n,k) gives n-th number a such that a^(2^k)+1 is prime (a generalized Fermat).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 6, 4, 2, 1, 10, 6, 4, 2, 1, 12, 10, 6, 4, 2, 1, 16, 14, 16, 118, 44, 30, 1, 18, 16, 20, 132, 74, 54, 102, 1, 22, 20, 24, 140, 76, 96, 162, 120, 1, 28, 24, 28, 152, 94, 112, 274, 190, 278, 1, 30, 26, 34, 208, 156, 114, 300, 234, 614, 46, 1, 36, 36, 46, 240, 158
Offset: 0

Views

Author

Jeppe Stig Nielsen, Oct 01 2003

Keywords

Examples

			{1}; {2,1}; {4,2,1}; ...
See the well-formed array on Gallot's page.
		

References

  • Harvey Dubner, J. Recr. Math., 18, 1986.

Crossrefs

A122528 Minimal number k such that (2k)^(2^n) + 1 is prime, but (2k)^(2^m) + 1 is composite for m < n.

Original entry on oeis.org

1, 7, 17, 76, 22, 57, 137, 117, 307, 671, 412, 1279, 767, 35926, 50915, 35453, 24297, 114094, 12259, 37949, 459722
Offset: 0

Views

Author

Alexander Adamchuk, Sep 17 2006

Keywords

Comments

A079706(a(n)) = 2^n which is the first occurrence of 2^n in A079706.
Corresponding primes A084712(a(n)) are {3, 197, 1336337, 284936905588473857, 197352587024076973231046657, ...}.

Examples

			a(0) = 1 because (2*1)^(2^0) + 1 = 2 + 1 = 3 is prime.
a(1) = 7 because (2*7)^(2^1) + 1 = 14^2 + 1 = 197 is prime but 14 + 1 = 15 is composite.
		

Crossrefs

Programs

  • PARI
    a(n)=for(k=1,+oo,if(ispseudoprime((2*k)^(2^n)+1),for(m=0,n-1,ispseudoprime((2*k)^(2^m)+1)&&next(2));return(k))) \\ Jeppe Stig Nielsen, Mar 10 2018

Extensions

Definition corrected by T. D. Noe, May 14 2008
a(9) through a(16) from the extensive tables of generalized Fermat primes compiled by Yves Gallot and others. - T. D. Noe, May 14 2008
a(17)-a(20) from Jeppe Stig Nielsen, Mar 10 2018

A182154 Smallest k >= 2 such that k^(2^n)+1 is the lesser member of a twin prime pair.

Original entry on oeis.org

2, 2, 2, 4, 2, 49592, 7132, 532, 333482, 2226686, 3543554, 23379038, 1249625230, 188489906
Offset: 0

Views

Author

Manuel Valdivia, Apr 15 2012

Keywords

Comments

These lesser of twin prime pairs are also generalized Fermat primes, (not possible for greater of twin prime pairs, except for 5).
When extending this sequence, it is useful if the primes b^(2^n)+1 are known in advance (Gallot link). - Jeppe Stig Nielsen, Sep 25 2019
For later terms, the bigger twin is only a probable prime, not a proven prime. - Jeppe Stig Nielsen, Nov 24 2022

Examples

			2^(2^4)+1 = 65537 = A001359(861), then a(4) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[k=2; While[!PrimeQ[k^(2^n)+1]||!PrimeQ[k^(2^n)+3],k++]; k,{n,0,7}]

Extensions

a(8)-a(10) from Jeppe Stig Nielsen, Sep 25 2019
Name edited by Felix Fröhlich, Sep 25 2019
a(11)-a(13) from Jeppe Stig Nielsen, Nov 24 2022
Previous Showing 21-30 of 36 results. Next