cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 66 results. Next

A062734 Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 15, 6, 1, 0, 0, 0, 0, 125, 222, 205, 120, 45, 10, 1, 0, 0, 0, 0, 0, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 0, 0, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Comments

T(n,n-1) = n^(n-2) counts free labeled trees A000272.
T(n,n) counts labeled connected unicyclic graphs A057500. - Geoffrey Critzer, Oct 07 2012

Examples

			Triangle starts:
[1],
[0, 1],
[0, 0, 3,  1],
[0, 0, 0, 16,  15,   6,   1],
[0, 0, 0,  0, 125, 222, 205, 120, 45, 10, 1],
...
		

References

  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - N. J. A. Sloane, Apr 06 2012
  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.5.

Crossrefs

Cf. A001187 (row sums), A054924 (unlabeled case), A061540 (a subdiagonal).
See A123527 for another version (without leading zeros in each row).

Programs

  • Mathematica
    nn=6;s=Sum[(1+y)^Binomial[n,2] x^n/n!,{n,0,nn}]; Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, k]]; (* Michael Somos, Aug 12 2017 *)
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( log( sum(m=0, n, (1 + y)^(m * (m-1)/2) * x^m/m!)), n), k))}; /* Michael Somos, Aug 12 2017 */

Formula

G.f.: Sum_{n>=1, k>=0} T(n, k) * x^n/n! * y^k = log(Sum_{n>=0} (1 + y)^binomial(n, 2) * x^n/n!). - Ralf Stephan, Jan 18 2005

A369194 Number of labeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 4, 23, 199, 2313, 34015, 606407, 12712643, 306407645, 8346154699, 253476928293, 8490863621050, 310937199521774, 12356288017546937, 529516578044589407, 24339848939829286381, 1194495870124420574751, 62332449791125883072149, 3446265450868329833016605
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A369199.

Examples

			The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{2},{1,3}}
             {{1},{1,2}}  {{3},{1,2}}
             {{2},{1,2}}  {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A001862, without loops A053530.
This is the covering case of A066383 and A369196, cf. A369192 and A369193.
The case of equality is A368597, without loops A367863.
The version without loops is A369191.
The connected case is A369197, without loops A129271.
The unlabeled version is A370169, equality A368599, non-covering A368598.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable graphs, covering A367868.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369196.

A001434 Number of graphs with n nodes and n edges.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 21, 65, 221, 771, 2769, 10250, 39243, 154658, 628635, 2632420, 11353457, 50411413, 230341716, 1082481189, 5228952960, 25945377057, 132140242356, 690238318754, 3694876952577, 20252697246580, 113578669178222, 651178533855913, 3813856010041981
Offset: 0

Views

Author

Keywords

Comments

The labeled version is A116508. - Gus Wiseman, Feb 22 2024

Examples

			From _Gus Wiseman_, Feb 22 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 6 graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}
                        {12,13,24,34}  {12,13,14,23,24}
                                       {12,13,14,23,25}
                                       {12,13,14,23,45}
                                       {12,13,14,25,35}
                                       {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A001429, labeled A057500.
The covering case is A006649, labeled A367863.
Diagonal n = k of A008406.
The labeled version is A116508.
The version with loops is A368598, connected A368983.
Allowing up to n edges gives A370315, labeled A369192.
A000088 counts unlabeled graphs, labeled A006125.
A001349 counts unlabeled connected graphs, labeled A001187.
A002494 counts unlabeled covering graphs, labeled A006129.

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n], {n, 24}] (* Robert G. Wilson v, Mar 22 2011 *)
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{2}],{n}]]],{n,0,5}] (* Gus Wiseman, Feb 22 2024 *)
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A008406. - Andrew Howroyd, Feb 02 2024

Extensions

More terms from Vladeta Jovovic, Jan 07 2000
a(0)=1 prepended by Andrew Howroyd, Feb 02 2024

A368984 Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 75, 191, 504, 1339, 3610, 9800, 26881, 74118, 205706, 573514, 1606107, 4513830, 12727944, 35989960, 102026638, 289877828, 825273050, 2353794251, 6724468631, 19239746730, 55123700591, 158133959239, 454168562921, 1305796834570, 3758088009136
Offset: 0

Views

Author

Andrew Howroyd, Jan 11 2024

Keywords

Comments

The graphs considered here can have loops but not parallel edges.
Also the number of unlabeled loop-graphs with n edges and n vertices such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024

Examples

			Representatives of the a(3) = 5 graphs are:
   {{1,2}, {1,3}, {2,3}},
   {{1}, {1,2}, {1,3}},
   {{1}, {1,2}, {2,3}},
   {{1}, {2}, {2,3}},
   {{1}, {2}, {3}}.
The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence.
		

Crossrefs

The case of a unique choice is A000081.
Without loops we have A137917, labeled A137916.
The labeled version appears to be A333331.
Without the choice condition we have A368598, covering A368599.
The complement is counted by A368835, labeled A368596 (covering A368730).
Row sums of A368926, labeled A368924.
The connected case is A368983.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)

Formula

Euler transform of A368983.

A369191 Number of labeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A054548.

Examples

			The a(0) = 1 through a(3) = 4 graphs:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A053530.
The connected case is A129271, unlabeled version A005703.
The case of equality is A367863, covering case of A367862.
This is the covering case of A369192, or A369193 for covered vertices.
The version for loop-graphs is A369194.
The unlabeled version is A370316.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A057500 counts connected graphs with n vertices and n edges.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369193.

A343088 Triangle read by rows: T(n,k) is the number of connected labeled graphs with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 1, 16, 0, 0, 0, 15, 125, 0, 0, 0, 6, 222, 1296, 0, 0, 0, 1, 205, 3660, 16807, 0, 0, 0, 0, 120, 5700, 68295, 262144, 0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969, 0, 0, 0, 0, 10, 4945, 258125, 4483360, 33779340, 100000000
Offset: 0

Views

Author

Andrew Howroyd, Apr 14 2021

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 1, 16;
  0, 0, 0, 15, 125;
  0, 0, 0,  6, 222, 1296;
  0, 0, 0,  1, 205, 3660,  16807;
  0, 0, 0,  0, 120, 5700,  68295,  262144;
  0, 0, 0,  0,  45, 6165, 156555, 1436568, 4782969;
  ...
		

Crossrefs

Main diagonal is A000272.
Subsequent diagonals give the number of connected labeled graphs with n nodes and n+k edges for k=0..11: A057500, A061540, A061541, A061542, A061543, A096117, A061544 A096150, A096224, A182294, A182295, A182371.
Row sums are A322137.
Column sums are A001187.
Cf. A054923 (unlabeled), A062734 (transpose), A290776 (multigraphs), A322147 (loops allowed), A331437 (series-reduced).

Programs

  • Mathematica
    row[n_] := (SeriesCoefficient[#, {y, 0, n}]& /@ CoefficientList[ Log[Sum[x^k*(1+y)^Binomial[k, 2]/k!, {k, 0, n+1}]] + O[x]^(n+2), x]* Range[0, n+1]!) // Rest;
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Aug 03 2022, after Andrew Howroyd *)
  • PARI
    Row(n)={Vec(serlaplace(polcoef(log(O(x^2*x^n)+sum(k=0, n+1, x^k*(1 + y + O(y*y^n))^binomial(k, 2)/k!)), n, y)), -(n+1))}
    { for(n=0, 8, print(Row(n))) }

A369192 Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).

Original entry on oeis.org

1, 1, 2, 8, 57, 638, 9949, 198440, 4791323, 135142796, 4346814276, 156713948672, 6251579884084, 273172369790743, 12969420360339724, 664551587744173992, 36543412829258260135, 2146170890448154922648, 134053014635659737513358, 8872652968135849629240560
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 8 graphs:
  {}  {}  {}       {}
          {{1,2}}  {{1,2}}
                   {{1,3}}
                   {{2,3}}
                   {{1,2},{1,3}}
                   {{1,2},{2,3}}
                   {{1,3},{2,3}}
                   {{1,2},{1,3},{2,3}}
		

Crossrefs

The version for loop-graphs is A066383, covering A369194.
The case of equality is A116508, covering A367863, also A367862.
The connected case is A129271, unlabeled A005703.
The covering case is A369191, minimal case A053530.
Counting only covered vertices gives A369193.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]
  • Python
    from math import comb
    def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 14 2024

Formula

a(n) = Sum_{k=0..n} binomial(binomial(n,2),k).

A372193 Number of labeled simple graphs on n vertices with a unique cycle of length > 2.

Original entry on oeis.org

0, 0, 0, 1, 19, 317, 5582, 108244, 2331108, 55636986, 1463717784, 42182876763, 1323539651164, 44955519539963, 1644461582317560, 64481138409909506, 2698923588248208224, 120133276796015812548, 5667351458582453925696, 282496750694780020437765, 14837506263979393796687088
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2024

Keywords

Comments

An undirected cycle in a graph is a sequence of distinct vertices, up to rotation and reversal, such that there are edges between all consecutive elements, including the last and the first.

Examples

			The a(4) = 19 graphs:
  12,13,23
  12,14,24
  13,14,34
  23,24,34
  12,13,14,23
  12,13,14,24
  12,13,14,34
  12,13,23,24
  12,13,23,34
  12,13,24,34
  12,14,23,24
  12,14,23,34
  12,14,24,34
  12,23,24,34
  13,14,23,24
  13,14,23,34
  13,14,24,34
  13,23,24,34
  14,23,24,34
		

Crossrefs

For no cycles we have A001858 (covering A105784), unlabeled A005195 (covering A144958).
Counting triangles instead of cycles gives A372172 (non-covering A372171), unlabeled A372194 (non-covering A372174).
The unlabeled version is A236570, non-covering A372191.
The covering case is A372195, column k = 1 of A372175.
A000088 counts unlabeled graphs, labeled A006125.
A002807 counts cycles in a complete graph.
A006129 counts labeled graphs, unlabeled A002494.
A372167 counts graphs by triangles, non-covering A372170.
A372173 counts unlabeled graphs by triangles, non-covering A263340.

Programs

  • Mathematica
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations /@ Subsets[Union@@y,{k}],And @@ Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2&]],{n,0,5}]
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-w-w^2/2)*(-log(1+w)/2 + w/2 - w^2/4)), -n-1)} \\ Andrew Howroyd, Jul 31 2024

Formula

E.g.f.: B(x)*C(x) where B(x) is the e.g.f. of A057500 and C(x) is the e.g.f. of A001858. - Andrew Howroyd, Jul 31 2024

Extensions

a(7) onwards from Andrew Howroyd, Jul 31 2024

A054780 Number of n-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0

Views

Author

Vladeta Jovovic, May 21 2000

Keywords

Comments

Also, number of n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.

Examples

			From _Gus Wiseman_, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
  {1}{2}{3}  {1}{2}{13}  {1}{2}{123}  {1}{12}{123}  {12}{13}{123}
             {1}{2}{23}  {1}{3}{123}  {1}{13}{123}  {12}{23}{123}
             {1}{3}{12}  {1}{12}{13}  {1}{23}{123}  {13}{23}{123}
             {1}{3}{23}  {1}{12}{23}  {2}{12}{123}
             {2}{3}{12}  {1}{13}{23}  {2}{13}{123}
             {2}{3}{13}  {2}{3}{123}  {2}{23}{123}
                         {2}{12}{13}  {3}{12}{123}
                         {2}{12}{23}  {3}{13}{123}
                         {2}{13}{23}  {3}{23}{123}
                         {3}{12}{13}  {12}{13}{23}
                         {3}{12}{23}
                         {3}{13}{23}
(End)
		

Crossrefs

Main diagonal of A055154.
Covers with any number of edges are counted by A003465, unlabeled A055621.
Connected graphs of this type are counted by A057500, unlabeled A001429.
This is the covering case of A136556.
The case of graphs is A367863, covering case of A116508, unlabeled A006649.
Binomial transform is A367916.
These set-systems have ranks A367917.
The unlabeled version is A368186.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A046165 counts minimal covers, ranks A309326.

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n+1, k+1)*(2^k-1)^n.
G.f.: Sum_{n>=0} log(1+(2^n-1)*x)^n/((1+(2^n-1)*x)*n!). - Paul D. Hanna and Vladeta Jovovic, Jan 16 2008
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jun 04 2022
Inverse binomial transform of A367916. - Gus Wiseman, Dec 19 2023

A368951 Number of connected labeled graphs with n edges and n vertices and with loops allowed.

Original entry on oeis.org

1, 1, 2, 10, 79, 847, 11436, 185944, 3533720, 76826061, 1880107840, 51139278646, 1530376944768, 49965900317755, 1767387701671424, 67325805434672100, 2747849045156064256, 119626103584870552921, 5533218319763109888000, 270982462739224265922466
Offset: 0

Views

Author

Andrew Howroyd, Jan 10 2024

Keywords

Comments

Exponential transform appears to be A333331. - Gus Wiseman, Feb 12 2024

Examples

			From _Gus Wiseman_, Feb 12 2024: (Start)
The a(0) = 1 through a(3) = 10 loop-graphs:
  {}  {11}  {11,12}  {11,12,13}
            {22,12}  {11,12,23}
                     {11,13,23}
                     {22,12,13}
                     {22,12,23}
                     {22,13,23}
                     {33,12,13}
                     {33,12,23}
                     {33,13,23}
                     {12,13,23}
(End)
		

Crossrefs

This is the connected covering case of A014068.
The case without loops is A057500, covering case of A370317.
Allowing any number of edges gives A062740, connected case of A322661.
This is the connected case of A368597.
The unlabeled version is A368983, connected case of A368984.
For at most n edges we have A369197.
A000085 counts set partitions into singletons or pairs.
A006129 counts covering graphs, connected A001187.

Programs

  • Maple
    egf:= (L-> 1-L/2-log(1+L)/2-L^2/4)(LambertW(-x)):
    a:= n-> n!*coeff(series(egf, x, n+1), x, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 10 2024
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(-log(1-t)/2 + t/2 - t^2/4 + 1))}

Formula

a(n) = A000169(n) + A057500(n) for n > 0.
E.g.f.: 1 - log(1-T(x))/2 + T(x)/2 - T(x)^2/4 where T(x) = -LambertW(-x) is the e.g.f. of A000169.
From Peter Luschny, Jan 10 2024: (Start)
a(n) = (exp(n)*Gamma(n + 1, n) - (n - 1)*n^(n - 1))/(2*n) for n > 0.
a(n) = (1/2)*(A063170(n)/n - A053506(n)) for n > 0. (End)
Previous Showing 21-30 of 66 results. Next