cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A228030 Primes of the form 7^n + 6.

Original entry on oeis.org

7, 13, 349, 33232930569607, 2651730845859653471779023381607
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217130 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=6), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+6];
  • Mathematica
    Select[Table[7^n + 6, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228031 Primes of the form 7^n + 10.

Original entry on oeis.org

11, 17, 59, 353, 2411, 117659, 823553, 1977326753, 9387480337647754305659, 3219905755813179726837617, 44567640326363195900190045974568017, 616873509628062366290756156815389726793178417, 30226801971775055948247051683954096612865741953
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A217132 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=7, h=10), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..300] | IsPrime(a) where a is  7^n+10];
  • Mathematica
    Select[Table[7^n + 10, {n, 0, 300}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A080443 Largest prime factor of 3^n+2.

Original entry on oeis.org

3, 5, 11, 29, 83, 7, 43, 199, 6563, 127, 59051, 25307, 48313, 63773, 4782971, 14348909, 119243, 335429, 23203, 10613, 60089, 1224149, 795323, 919, 282429536483, 1583717027, 2541865828331, 693236134999, 174632003473
Offset: 0

Views

Author

Hugo Pfoertner, Mar 21 2003

Keywords

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(3^n+2)):n in [0..28]]; // Marius A. Burtea, Jul 12 2019
  • Mathematica
    Table[FactorInteger[3^n+2][[-1,1]],{n,0,30}] (* Harvey P. Dale, Oct 21 2011 *)
  • PARI
    for(n=0,28,f=factor(3^n+2);print1(f[#f[,1],1],", ")) \\ Hugo Pfoertner, Jul 12 2019
    

Extensions

Corrected by T. D. Noe, Nov 15 2006

A153280 Eigensequence of triangle A153279.

Original entry on oeis.org

1, 3, 15, 165, 4785, 397155, 97302975, 71128474725, 155700231173025, 1021860617188563075, 20115326249356864131375, 1187830130350772183821825125, 210422919761508941591852499068625, 111827787746815596446398867662527275875
Offset: 0

Views

Author

Gary W. Adamson, Dec 23 2008

Keywords

Examples

			Triangle M =
1;
1;
2, 1;
4, 2, 3;
8, 4, 6, 9;
16, 8, 12, 18, 27;
...
M^n rapidly converges to this sequence with sufficiently large n.
a(0) = 1, a(1) = 1*(2+3^0) = 3, a(2) = 3*(2+3^1) = 15, a(3) = 15*(2+3^2) = 165, a(4) = 165*(2+3^3) = 4785, ... - _Philippe Deléham_, Sep 27 2014
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1] == a[n]*(2 + 3^n), a[0] == 1}, a, {n, 0, 15}] (* Vaclav Kotesovec, Jan 22 2023 *)
    Table[2^n * QPochhammer[-1/2, 3, n], {n, 0, 15}] (* Vaclav Kotesovec, Jan 22 2023 *)
    nxt[{n_,a_}]:={n+1,a(2+3^n)}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Mar 28 2024 *)

Formula

Given triangle A153279, let a new triangle = M shifted down one row, inserting a "1" in (0,0). Triangle equals lim_{n->oo} M^n.
a(n+1) = a(n)*(2+3^n), a(0) = 1. - Philippe Deléham, Sep 27 2014
a(n) ~ c * 3^(n*(n-1)/2), where c = QPochhammer(-2, 1/3) = 6.80914656805984199... - Vaclav Kotesovec, Jan 22 2023

Extensions

More terms from Philippe Deléham, Sep 27 2014

A228027 Primes of the form 4^k + 9.

Original entry on oeis.org

13, 73, 1033, 262153, 1073741833, 73786976294838206473, 4835703278458516698824713
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

Subsequence of A104070. - Elmo R. Oliveira, Nov 28 2023

Examples

			262153 is a term because 4^9 + 9 = 262153 is prime.
		

Crossrefs

Cf. A000040, A217350 (corresponding k's).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), A228026 (r=4, h=3), this sequence (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4^n+9];
  • Mathematica
    Select[Table[4^n + 9, {n, 0, 200}],PrimeQ]

Formula

a(n) = 4^A217350(n) + 9. - Elmo R. Oliveira, Nov 28 2023

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228033 Primes of the form 8^k + 5.

Original entry on oeis.org

13, 2787593149816327892691964784081045188247557, 15177100720513508366558296147058741458143803430094840009779784451085189728165691397
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

a(4) = 8^64655 + 5 = 1.919...*10^58389 is too large to include. - Amiram Eldar, Jul 23 2025

Crossrefs

Cf. A217355 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 8^n+5];
  • Mathematica
    Select[Table[8^n + 5, {n, 4000}], PrimeQ]

A081715 Numbers n such that 3^n+2 is a semiprime.

Original entry on oeis.org

6, 7, 11, 12, 20, 27, 28, 40, 44, 60, 71, 84, 108, 118, 145, 156, 160, 211, 263, 295, 296, 304, 306, 316, 351, 474, 488, 495
Offset: 1

Views

Author

Hugo Pfoertner, Apr 04 2003

Keywords

Comments

a(29) >= 514. - Hugo Pfoertner, Jul 24 2019
531, 562, 676, 760, 807, 866, 1059, 1502, 1659, 2539, 2656, 3070, 3163, 4014, 5736, 5966, 6680, 6745, 7192, 7861, 8104, 9703, 10014 are terms of this sequence. - Chai Wah Wu, Oct 18 2019

Examples

			a(1)=6 because 3^6+2=731=17*43, a(2)=7 because 3^7+2=2189=11*199.
a(1)=6 because 3^6+2=731=17*43
a(2)=7 because 3^7+2=2189=11*199
a(3)=11 because 3^11+2=177149=7*25307
a(4)=12 because 3^12+2=531443=11*48313
a(5)=20 because 3^20+2=3486784403=58027*60089
a(6)=27 because 3^27+2=7625597484989=11*693236134999
a(7)=28 because 3^28+2=22876792454963=131*174632003473
a(8)=40 because 3^40+2=12157665459056928803=1170408739*10387538177
a(9)=44 because 3^44+2=984770902183611232883=21577*45639843452917979
a(10)=60 because 3^60+2=42391158275216203514294433203=89*476305149159732623756117227
a(11)=71 because 3^71+2=7509466514979724803946715958257549=7*1072780930711389257706673708322507
a(12)=84 because 3^84+2=11972515182562019788602740026717047105683=13483993*887905769645684315365837109728331
a(13)=108 because 3^108+2=3381391913522726342930221472392241170198527451848563=671633*5034582746116891729456744192724659405059798211
a(14)=118 because 3^118+2=199667811101603467823686647723289448859052847504205678491=17*11745165358917851048452155748428791109356049853188569323
a(15)=145 because 3^145+2=1522586358169246802159262479225089070726226750574991661790882326344645=5*304517271633849360431852495845017814145245350114998332358176465268929
a(16)=156 because 3^156+2=269721605590607563262106870407286853611938890184108047911269431464974473523=21883136019044570108827*12325546272521124629737118652366725946328428459583049
a(17)=160 because 3^160+2=21847450052839212624230656502990235142567050104912751880812823948662932355203=19*1149865792254695401275297710683696586450897373942776414779622313087522755537
a(18)=211 because 3^211+2=47052721287394587764057094854672253553918218437190874778408030747195017485692977810906266281547645149=97*485079600900975131588217472728579933545548643682380152354721966465928015316422451658827487438635517
a(19)=263 because 3^263+2=304011485348815530556923313708989269910796626718253224787639751028488890841299195402970869140037716024202112537180443065484429=7*43430212192687932936703330529855609987256660959750460683948535861212698691614170771852981305719673717743158933882920437926347
a(20)=295 because 3^295+2=563339419994190847700930153835754386693266237141306322927902016783411511018514718493004963603658195013376479179415613344911575031957595780109=3535513*159337391771488564092659298335419608609349261943402929908022404891004929417177851840172830252259911083165718575894251653129708484159893
		

Crossrefs

Programs

  • PARI
    for(n=1, 295, if(bigomega(3^n+2)==2, print1(n", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007

Extensions

2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007
More terms from Sean A. Irvine, Mar 21 2010

A228028 Primes of the form 5^n + 4.

Original entry on oeis.org

5, 29, 15629, 9765629
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A124621 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A228027 (k=4, h=9), A182330 (k=5, h=2), this sequence (k=5, h=4), A228029 (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A228030 (k=7, h=6), A228031 (k=7, h=10), A228032 (k=8, h=3), A228033 (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+4];
  • Mathematica
    Select[Table[5^n + 4, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A267945 Primes that are a prime power plus two.

Original entry on oeis.org

5, 7, 11, 13, 19, 29, 31, 43, 61, 73, 83, 103, 109, 127, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883
Offset: 1

Views

Author

Robert C. Lyons, Jan 22 2016

Keywords

Comments

The term 'prime power' refers to the elements of A246655.
If we were to extend the definition of prime power to include 1, then 3 would be the first term of the sequence, because 3 = 2^0 + 2.
The sequence is probably infinite, since it includes all the terms of A006512 (Greater of twin primes).
From Robert Israel, Jan 22 2016: (Start)
Since 3 divides p or p^k+2 if k is even, the only terms of the form p^k+2 where k is even are A228034.
All terms not in A057735 are congruent to 1 mod 3.
The generalized Bunyakovsky conjecture implies that for any odd k, there are infinitely many terms of the form p^k+2. (End)

Examples

			5 is in the sequence because 5 = 3^1 + 2.
7 is in the sequence because 7 = 5^1 + 2.
11 is in the sequence because 11 = 3^2 + 2.
13 is in the sequence because 13 = 11^1 + 2.
29 is in the sequence because 29 = 3^3 + 2.
		

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and nops(numtheory:-factorset(t-2))=1, [ seq(i,i=3..1000, 2)]); # Robert Israel, Jan 22 2016
  • Mathematica
    A267945Q = PrimeQ@# && (Length@# == 1 && #[[1, 1]] > 1 &@FactorInteger[# - 2]) & (* JungHwan Min, Jan 25 2016 *)
    Select[Array[Prime, 100], Length@# == 1 && #[[1, 1]] > 1 &@FactorInteger[# - 2] &] (* JungHwan Min, Jan 25 2016 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprimepower(p-2), print1(p, ", ")););} \\ Michel Marcus, Jan 22 2016
  • Sage
    filter( is_prime, [ n+2 for n in prime_powers( 1, 1000 ) ] )
    

A132829 Numbers k such that 3^k + 2 is not prime.

Original entry on oeis.org

5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Artur Jasinski, Sep 03 2007

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..100]| not IsPrime(3^n+2)]; // Vincenzo Librandi, Jan 28 2011
  • Mathematica
    a = {}; c = 3^x + 2; Do[If[PrimeQ[c],0, AppendTo[a, x]], {x, 0, 100}]; a
    Select[Range[90],CompositeQ[3^#+2]&] (* Harvey P. Dale, Sep 25 2021 *)
Previous Showing 11-20 of 22 results. Next