cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A115439 Numbers m such that the square of m is the concatenation of two numbers k and k+5.

Original entry on oeis.org

4, 7, 45, 56, 38163, 61838, 83618, 346980, 653021, 950051, 8647555, 9534265, 8167822283, 9007920992, 9209900792, 9950000501, 4737445289221, 4990568257187, 5009431742814, 5262554710780, 8373808925585, 8626931893551, 34323166122692, 34532758615690, 49625657225895, 49835249718893
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

All numbers of the form f(n)=9(n).5.0(2n).5.0(n-1).1 where n>0 are in the sequence because if k(n)=9(n).0(n).25.0(n-1).9(n).6 then f(n)^2=k(n).(k(n)+5). For example f(2)=9950000501; k(2)=9900250996 and f(2)^2=9950000501^2=9900250996.9900251001 =k(2).(k(2)+5). - Farideh Firoozbakht, Nov 26 2006
m^2 = (k)|(k+5) = (k)|(k) + 5 = (10^q + 1)*k + 5 where | denotes concatenation and q is the number of digits of k gives a nonlinear equation that can be solved using the solver below. - David A. Corneth, Jan 02 2021

Examples

			38163^2 = 14564_14569.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A344897 a(n) is the number of divisors of 10^n + 1.

Original entry on oeis.org

2, 2, 2, 8, 4, 4, 4, 4, 4, 32, 8, 24, 8, 8, 16, 128, 32, 16, 8, 4, 16, 192, 16, 32, 8, 32, 8, 128, 16, 8, 128, 4, 16, 384, 16, 32, 64, 16, 8, 768, 16, 8, 128, 16, 16, 4096, 16, 16, 512, 16, 128, 256, 16, 4, 64, 768, 32, 64, 32, 16, 64, 8, 8, 3072, 8, 64, 256, 4, 16, 1024, 2048, 8, 32, 16, 128, 2048, 64, 3072, 128, 16
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2021

Keywords

Comments

a(n) is even because 10^n + 1 is not a square number.

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := DivisorSigma[0, 10^n + 1]; Array[a, 60, 0] (* Amiram Eldar, Jun 01 2021 *)
  • PARI
    a(n) = numdiv(10^n+1);

Formula

a(n) = A000005(A000533(n)).

A038371 Smallest prime factor of 10^n + 1.

Original entry on oeis.org

2, 11, 101, 7, 73, 11, 101, 11, 17, 7, 101, 11, 73, 11, 29, 7, 353, 11, 101, 11, 73, 7, 89, 11, 17, 11, 101, 7, 73, 11, 61, 11, 19841, 7, 101, 11, 73, 11, 101, 7, 17, 11, 29, 11, 73, 7, 101, 11, 97, 11, 101, 7, 73, 11, 101, 11, 17, 7, 101, 11, 73, 11, 101, 7, 1265011073
Offset: 0

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

a(n) >= 7 for all n >= 1 since 10^n + 1 is then not divisible by 2, 3 or 5.
Record values are a({0, 1, 2, 16, 32, 64, ...}). - M. F. Hasler, Apr 04 2008
The record values (2, 11, 101, 353, 19841, 1265011073, ...) are also found in A185121 and A102050 (smallest prime factor of 10^2^n+1). - M. F. Hasler, Jun 28 2024

Examples

			a(12) = 73 as 10^12+1 = 1000000000001 = 73*137*99990001.
		

References

  • Ehrhard Behrends, Five-Minute Mathematics, translated by David Kramer. American Mathematical Society (2008) p. 7

Crossrefs

Cf. A020639 (least prime factor), A062397 (10^n + 1), A003021 (largest prime factor of 10^n + 1), A057934 (number of prime factors of 10^n + 1, with multiplicity), A119704 (as before, without multiplicity), A185121 (smallest prime factor of 10^2^n+1), A102050 (as before, but 1 if 10^2^n+1 is prime).

Programs

  • Magma
    [Min(PrimeFactors(10^n+1)):n in[0..70]]; // Vincenzo Librandi, Nov 08 2018
  • Mathematica
    Table[FactorInteger[10^n + 1][[1, 1]], {n, 0, 49}] (* Alonso del Arte, Oct 21 2011 *)
  • PARI
    A038371(n)=A020639(10^n+1) \\ Much more efficient than the naive {factor(10^n+1)[1,1]}. - M. F. Hasler, Apr 04 2008, edited Jun 29 2024
    

Formula

a(n) = A020639(A062397(n)).
For odd n, a(n) <= 11 since every (base 10) palindrome of even length is divisible by 11. - M. F. Hasler, Apr 04 2008 [See below for more precise formula.]
More generally, for k >= 0 and n == 2^k (mod 2^(k+1)), a(n) <= A185121(k) = (11, 101, 73, 17, 353, ...). This follows from x^{2q+1} + 1 = (x+1) Sum_{m=0..2q} (-x)^m, with x=10^2^k. - M. F. Hasler, Jul 30 2019
From M. F. Hasler, Jun 28 2024: (Start)
a(2k+1) = 7 iff k == 1 (mod 3), else 11. [Making the 2008 formula more precise.]
a(4k+2) = 29 iff k == 3 (mod 7), else = 61 if k == 7 (mod 15), else = 89 if k == 5 (mod 11), else 101.
a(8k+4) = 73 for all k >= 0.
a(16k+8) = 17 for all k >= 0.
a(32k+16) = 97 iff k==1 (mod 3), else 353.
a(64k+32) = 193 iff k==1 (mod 3), else 1217 if k==9 (mod 19), else 2753 if k==21 (mod 43), else 3137 if k==24 (mod 49), else 3329 if k==6 (mod 13), else 4481 if k==17 (mod 35), else 4673 if k==36 (mod 73), else 5953 if k==15 (mod 31), else 6529 if k==8 (mod 17), else 13633 if k==35 (mod 71), else 15937 if k==41 (mod 83), else 19841. (End)

Extensions

More terms from Reinhard Zumkeller, Mar 12 2002

A366668 Sum of the divisors of 10^n+1.

Original entry on oeis.org

3, 12, 102, 1344, 10212, 109104, 1010004, 10909104, 105882372, 1413350400, 10102223208, 114737461440, 1021097900424, 10921790676000, 104844305394000, 1355394166984704, 10073631600468000, 110177492439680640, 1010002989998020008, 10909090909090909104
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(3)=1344 because 10^3+1 has divisors {1, 7, 11, 13, 77, 91, 143, 1001}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](10^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 10^Range[0,19] + 1] (* Paul F. Marrero Romero, Nov 12 2023 *)

Formula

a(n) = sigma(10^n+1) = A000203(A062397(n)).

A366669 a(n) = phi(10^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 10, 100, 720, 9792, 90900, 990000, 9090900, 94117632, 681410880, 9897840000, 86925373920, 979102080000, 9080325951840, 95255567232000, 712493107200000, 9926748531589120, 90004044661864320, 989999010000000000, 9090909090909090900, 97910150554895155200
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[10^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 10 2023 *)
  • PARI
    {a(n) = eulerphi(10^n+1)}

Formula

a(n) = A000010(A062397(n)). - Paul F. Marrero Romero, Nov 10 2023

A366713 Number of prime factors of 12^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 3, 3, 3, 5, 4, 2, 4, 5, 4, 7, 2, 3, 5, 4, 6, 9, 6, 4, 6, 6, 5, 10, 3, 3, 6, 3, 2, 9, 4, 5, 7, 4, 5, 11, 4, 5, 6, 5, 4, 12, 3, 5, 5, 5, 10, 9, 5, 5, 10, 7, 9, 11, 8, 6, 10, 5, 6, 15, 5, 9, 11, 4, 5, 12, 10, 3, 10, 5, 8, 17, 5, 6, 9, 4, 6, 15
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]+1]
  • PARI
    a(n)=bigomega(12^n+1)

Formula

a(n) = bigomega(12^n+1) = A001222(A178248(n)).

A366687 Number of prime factors of 11^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 3, 2, 5, 2, 4, 4, 4, 3, 7, 3, 7, 4, 6, 5, 8, 3, 6, 5, 7, 4, 7, 4, 7, 7, 6, 3, 10, 6, 6, 6, 7, 4, 13, 6, 11, 7, 5, 4, 11, 5, 6, 9, 5, 6, 13, 6, 7, 5, 8, 6, 11, 3, 7, 9, 13, 7, 12, 6, 7, 8, 6, 4, 13, 3, 10, 8, 9, 7, 14, 8, 6, 10, 8, 8, 13, 6, 12, 12, 7, 10
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[11^Range[70]+1]
  • PARI
    a(n)=bigomega(11^n+1)

Formula

a(n) = bigomega(11^n+1) = A001222(A034524(n)).

A001271 Irregular table read by rows: row n lists prime factors of 10^n +1, with multiplicity.

Original entry on oeis.org

2, 11, 101, 7, 11, 13, 73, 137, 11, 9091, 101, 9901, 11, 909091, 17, 5882353, 7, 11, 13, 19, 52579, 101, 3541, 27961, 11, 11, 23, 4093, 8779, 73, 137, 99990001, 11, 859, 1058313049, 29, 101, 281, 121499449, 7, 11, 13, 211, 241, 2161, 9091, 353, 449, 641, 1409, 69857
Offset: 0

Views

Author

N. J. A. Sloane, revised Jul 13 2009

Keywords

Comments

Except for 2, all these primes are in A028416, and all the primes in A028416 appear here. - Davide Rotondo, Aug 12 2023

Examples

			Table begins:
    2;
   11;
  101,
    7,      11, 13;
   73,     137;
   11,    9091;
  101,    9901;
   11,  909091;
   17, 5882353;
  ...
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

Crossrefs

Extensions

Term ordering corrected by Sean A. Irvine, Apr 11 2012
Minor edits to description by Ray Chandler, May 02 2017

A309358 Numbers k such that 10^k + 1 is a semiprime.

Original entry on oeis.org

4, 5, 6, 7, 8, 19, 31, 53, 67, 293, 586, 641, 922, 2137, 3011
Offset: 1

Views

Author

Hugo Pfoertner, Jul 29 2019

Keywords

Comments

a(16) > 12000.
10^k + 1 is composite unless k is a power of 2, and it can be conjectured that it is composite for all k > 2, cf. A038371 and A185121. - M. F. Hasler, Jul 30 2019
Suppose k is odd. Then k is a term if and only if (10^k+1)/11 is prime. - Chai Wah Wu, Jul 31 2019

Examples

			a(1) = 4 because 10^4 + 1 = 10001 = 73*137.
		

Crossrefs

Odd terms in sequence: A001562.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..200] | IsSemiprime(s) where s is 10^n+1]; // Vincenzo Librandi, Jul 31 2019
  • Mathematica
    Select[Range[200], Plus@@Last/@FactorInteger[10^# + 1] == 2 &] (* Vincenzo Librandi, Jul 31 2019 *)
Previous Showing 11-19 of 19 results.