cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A054992 Number of prime factors of 2^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 4, 3, 2, 2, 2, 3, 4, 1, 2, 4, 2, 2, 4, 3, 2, 3, 4, 4, 6, 2, 3, 6, 2, 2, 5, 4, 5, 4, 3, 4, 4, 2, 3, 6, 2, 3, 7, 5, 3, 3, 3, 7, 6, 3, 3, 6, 6, 3, 5, 3, 4, 4, 2, 5, 7, 2, 6, 6, 3, 4, 5, 7, 3, 5, 3, 5, 7, 4, 6, 10, 2, 3, 10, 5, 6, 5, 4, 5, 5, 4, 4, 11, 6, 2, 5, 4, 5, 3, 5, 6, 9, 6, 2, 9, 3
Offset: 1

Views

Author

Arne Ring (arne.ring(AT)epost.de), May 30 2000

Keywords

Comments

The length of row n in A001269.

Examples

			a(3) = 2 because 2^3 + 1 = 9 = 3*3.
		

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), this sequence (b=2).
Cf. A046051 (number of prime factors of 2^n-1).
Cf. A086257 (number of primitive prime factors).

Programs

Formula

a(n) = A046051(2n) - A046051(n). - T. D. Noe, Jun 18 2003
a(n) = A001222(A000051(n)). - Amiram Eldar, Oct 04 2019

Extensions

Extended by Patrick De Geest, Oct 01 2000
Terms to a(500) in b-file from T. D. Noe, Nov 10 2007
Deleted duplicate (and broken) Wagstaff link. - N. J. A. Sloane, Jan 18 2019
a(500)-a(1062) in b-file from Amiram Eldar, Oct 04 2019
a(1063)-a(1128) in b-file from Max Alekseyev, Jul 15 2023, Mar 15 2025

A057934 Number of prime factors of 10^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 3, 2, 2, 2, 2, 2, 5, 3, 5, 3, 3, 4, 7, 5, 4, 3, 2, 4, 8, 4, 5, 3, 5, 3, 7, 4, 3, 7, 2, 4, 9, 4, 5, 6, 4, 3, 10, 4, 3, 7, 4, 4, 12, 4, 4, 9, 4, 7, 8, 4, 2, 6, 10, 5, 6, 5, 4, 6, 3, 3, 12, 3, 6, 8, 2, 4, 10, 11, 3, 5, 4, 7, 11, 6, 12, 7, 4, 9, 11, 3, 7, 8, 8, 3, 8, 4, 4, 11, 6, 4, 8, 4, 6, 8, 4, 5, 13
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Comments

2^(a(2n)-1)-1 predicts the number of pair-solutions of even length L for AB = A^2 + B^2. For instance, with length 18 we have 10^18 + 1 = 101*9901*999999000001 or 3 divisors F which when put into the Mersenne formula 2^(F-1)-1 yields 3 pairs (see reference 'Puzzle 104' for details).

Crossrefs

bigomega(b^n+1): this sequence (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057951(2n) - A057951(n). - T. D. Noe, Jun 19 2003

A057935 Number of prime factors of 9^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 3, 4, 3, 4, 2, 4, 3, 4, 6, 4, 4, 6, 2, 4, 4, 4, 5, 7, 5, 4, 4, 8, 4, 5, 6, 4, 7, 5, 2, 6, 5, 9, 8, 5, 6, 7, 5, 5, 10, 7, 6, 9, 4, 4, 6, 9, 6, 8, 7, 6, 9, 8, 9, 9, 5, 3, 11, 6, 4, 11, 6, 8, 9, 9, 8, 6, 9, 5, 6, 6, 6, 13, 4, 8, 7, 5, 4, 7, 6, 5, 11, 8, 5, 8, 7, 4, 11, 7, 9, 9, 5, 9, 7, 5, 6, 10, 7, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), this sequence (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(9^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[Table[9^n + 1, {n, 1, 30}]] (* Amiram Eldar, Feb 02 2020 *)

Formula

a(n) = A057952(2n) - A057952(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062396(n)) = A057941(2*n). - Amiram Eldar, Feb 02 2020

A057941 Number of prime factors of 3^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 3, 2, 3, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 2, 5, 4, 4, 3, 7, 4, 3, 6, 5, 4, 7, 4, 5, 6, 4, 2, 7, 4, 5, 4, 5, 4, 8, 5, 4, 7, 3, 5, 10, 4, 5, 4, 5, 8, 9, 4, 4, 5, 7, 6, 8, 4, 4, 7, 4, 5, 13, 2, 5, 6, 4, 5, 9, 9, 7, 8, 4, 5, 12, 6, 6, 7, 5, 5, 12, 5, 6, 10, 9, 7, 11, 6, 5, 9, 8, 4, 9, 4, 8, 6, 5, 9, 14, 6, 4
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), this sequence (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057958(2n) - A057958(n) - T. D. Noe, Jun 19 2003
a(n) = A001222(A034472(n)). - Amiram Eldar, Feb 01 2020

A057936 Number of prime factors of 8^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 4, 2, 4, 4, 4, 3, 6, 6, 5, 4, 4, 6, 7, 3, 6, 6, 5, 4, 7, 6, 5, 5, 7, 10, 10, 5, 5, 11, 5, 3, 9, 9, 11, 6, 7, 8, 7, 6, 7, 10, 6, 7, 12, 8, 7, 7, 7, 14, 11, 5, 6, 10, 12, 8, 9, 8, 8, 8, 4, 9, 13, 4, 11, 12, 8, 9, 8, 15, 8, 8, 6, 10, 12, 8, 12, 17, 6, 7, 15, 10, 9, 12, 12, 10, 11, 8, 8, 18, 12
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), this sequence (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(8^n + 1):n in [1..110]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[8^Range[100]+1] (* Harvey P. Dale, Dec 16 2014 *)

Formula

a(n) = A057953(2n) - A057953(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062395(n)) = A054992(3*n). - Amiram Eldar, Feb 02 2020

A057939 Number of prime factors of 5^n + 1 (counted with multiplicity).

Original entry on oeis.org

2, 2, 4, 2, 3, 3, 4, 3, 6, 4, 5, 3, 4, 3, 7, 3, 4, 5, 5, 4, 10, 4, 4, 4, 5, 5, 10, 3, 4, 7, 5, 4, 9, 6, 7, 6, 5, 4, 8, 5, 6, 6, 6, 3, 10, 3, 5, 5, 7, 7, 10, 5, 5, 6, 7, 7, 9, 3, 6, 6, 6, 4, 16, 4, 8, 7, 3, 7, 9, 7, 5, 6, 5, 5, 13, 5, 9, 10, 6, 6, 14, 6, 5, 7, 9, 5, 9, 7, 5, 12, 8, 4, 10, 6, 9, 7, 7, 7, 12
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), this sequence (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Mathematica
    PrimeOmega[5^Range[100]+1] (* Harvey P. Dale, Nov 27 2013 *)

Formula

a(n) = A057956(2n) - A057956(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A034474(n)). - Amiram Eldar, Feb 01 2020

A057940 Number of prime factors of 4^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 2, 3, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 3, 5, 3, 7, 3, 6, 3, 3, 4, 5, 2, 6, 4, 7, 5, 5, 4, 10, 3, 5, 5, 5, 4, 11, 2, 4, 3, 6, 6, 9, 2, 4, 6, 7, 5, 8, 3, 7, 6, 6, 4, 10, 2, 10, 7, 6, 4, 8, 4, 6, 7, 5, 2, 14, 4, 9, 5, 4, 4, 10, 4, 6, 8, 11, 4, 8, 3, 4, 8, 11, 4, 9, 5, 10, 4, 9, 8, 12, 6
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), A057938 (b=6), A057939 (b=5), this sequence (b=4), A057941 (b=3), A054992 (b=2).

Programs

Formula

a(n) = A057957(2n) - A057957(n). - T. D. Noe, Jun 19 2003
a(n) = Omega(4^n + 1) = A001222(A052539(n)). - Wesley Ivan Hurt, Jan 28 2014
a(n) = A054992(2*n). - Amiram Eldar, Feb 01 2020

A057938 Number of prime factors of 6^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 4, 2, 3, 3, 2, 2, 4, 3, 5, 3, 3, 6, 3, 3, 6, 4, 3, 4, 4, 4, 5, 5, 4, 9, 2, 3, 6, 3, 11, 5, 4, 3, 9, 5, 4, 7, 2, 3, 7, 5, 2, 7, 7, 6, 8, 4, 5, 10, 8, 6, 7, 3, 2, 6, 3, 2, 10, 3, 8, 11, 5, 5, 6, 7, 4, 5, 6, 5, 10, 5, 6, 11, 6, 6, 8, 4, 5, 8, 8, 5, 11, 4, 3, 16, 12, 4, 5, 5, 10, 4, 4, 5
Offset: 1

Views

Author

Patrick De Geest, Oct 15 2000

Keywords

Crossrefs

bigomega(b^n+1): A057934 (b=10), A057935 (b=9), A057936 (b=8), A057937 (b=7), this sequence (b=6), A057939 (b=5), A057940 (b=4), A057941 (b=3), A054992 (b=2).

Programs

  • Magma
    f:=func; [f(6^n + 1):n in [1..100]]; // Marius A. Burtea, Feb 02 2020
  • Mathematica
    PrimeOmega[6^Range[100]+1] (* Harvey P. Dale, Mar 10 2013 *)

Formula

a(n) = A057955(2n) - A057955(n). - T. D. Noe, Jun 19 2003
a(n) = A001222(A062394(n)). - Amiram Eldar, Feb 02 2020

A366638 Sum of the divisors of 7^n+1.

Original entry on oeis.org

3, 15, 93, 660, 3606, 34560, 236964, 1559520, 9155916, 77423280, 530807472, 3868683120, 21224771760, 185094572580, 1261494915594, 9988783073280, 49990612274316, 436182213726030, 3279858902194056, 21372989348391720, 122709716651985624, 1082323574100172800
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=3606 because 7^4+1 has divisors {1, 2, 1201, 2402}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 7^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 16 2023 *)

Formula

a(n) = sigma(7^n+1) = A000203(A034491(n)).

A366639 a(n) = phi(7^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 20, 168, 1200, 7600, 43200, 407680, 2712832, 19707408, 112560000, 945677920, 6768230400, 47530457728, 271289229120, 2096760960000, 16569393144832, 116315256993600, 597938524646400, 5699431359135360, 38890647857280000, 270061302781670400
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[7^Range[0,21] + 1] (* Paul F. Marrero Romero, Nov 05 2023 *)
  • PARI
    {a(n) = eulerphi(7^n+1)}

Formula

a(n) = A000010(A034491(n)). - Paul F. Marrero Romero, Nov 06 2023
Showing 1-10 of 14 results. Next