A060486
Tricoverings of an n-set.
Original entry on oeis.org
1, 0, 0, 5, 205, 11301, 904580, 101173251, 15207243828, 2975725761202, 738628553556470, 227636079973503479, 85554823285296622543, 38621481302086460057613, 20669385794052533823555309, 12966707189875262685801947906, 9441485712482676603570079314728
Offset: 0
There are 1 4-block tricovering, 3 5-block tricoverings and 1 6-block tricovering of a 3-set (cf. A060487), so a(3)=5.
Cf.
A006095,
A060483-
A060485, (row sums of)
A060487,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060492
Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).
Original entry on oeis.org
4, 60, 120, 13, 375, 3030, 9030, 5040, 28, 1392, 24552, 207900, 838320, 1345680, 362880, 50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600, 80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640
Offset: 3
Triangle begins:
[4, 60, 120],
[13, 375, 3030, 9030, 5040],
[28, 1392, 24552, 207900, 838320, 1345680, 362880],
[50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600], [80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640, 52897521600, 91945022400, 64778313600, 8043235200],
...
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060491).
-
\\ gives g.f. of k-th column.
ColGf(k) = k!*polcoef(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^k) )*sum(j=0, k, 1/(1-y)^binomial(j, 3)*exp((-x^2/2)/(1-y)^j + O(x*x^k))*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))); Mat([Col(p/y^3, -n) | p<-Vec(g)[2..m+1]])}
{ my(A=T(8)); for(n=3, matsize(A)[1], print(A[n, 4..2*n])) } \\ Andrew Howroyd, Jan 30 2020
A059530
Triangle T(n,k) of k-block T_0-tricoverings of an n-set, n >= 3, k = 0..2*n.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 1, 39, 89, 43, 3, 0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12, 0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70, 0, 0, 0, 0, 0, 5040, 536760, 6052730, 20660055, 29432319, 19826737, 6481160, 964495, 52430
Offset: 3
Triangle begins:
[0, 0, 0, 0, 1, 3, 1],
[0, 0, 0, 0, 1, 39, 89, 43, 3],
[0, 0, 0, 0, 0, 252, 2192, 4090, 2435, 445, 12],
[0, 0, 0, 0, 0, 1260, 37080, 179890, 289170, 188540, 50645, 4710, 70],
...
There are 5 = 1 + 3 + 1 T_0-tricoverings of a 3-set and 175 = 1 + 39 + 89 + 43 + 3 T_0-tricoverings of a 4-set, cf. A060070.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
-
\\ gets k-th column as vector
C(k)=if(k<4, [], Vecrev(serlaplace(polcoef(exp(-x + x^2/2 + x^3*y/3 + O(x*x^k))*sum(i=0, 2*k, (1+y)^binomial(i, 3)*exp(-x^2*(1+y)^i/2 + O(x*x^k))*x^i/i!), k))/y)) \\ Andrew Howroyd, Jan 30 2020
-
T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=exp(-x + x^2/2 + x^3*y/3 + O(x*x^m))*sum(k=0, m, (1+y)^binomial(k, 3)*exp(-x^2*(1+y)^k/2 + O(x*x^m))*x^k/k!)); Mat([Col(serlaplace(p), -n) | p<-Vec(g)[2..m+1]]);}
{ my(A=T(8)); for(n=3, matsize(A)[1], print(concat([0], A[n, 1..2*n]))) } \\ Andrew Howroyd, Jan 30 2020
A060483
Number of 5-block tricoverings of an n-set.
Original entry on oeis.org
3, 57, 717, 7845, 81333, 825237, 8300757, 83202645, 832809813, 8331237717, 83324947797, 833299785045, 8333199127893, 83332796486997, 833331185898837, 8333324743497045, 83333298973791573, 833333195894773077, 8333332783578305877, 83333331134311650645
Offset: 3
Cf.
A006095,
A060484,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A060491
Number of ordered tricoverings of an unlabeled n-set.
Original entry on oeis.org
1, 0, 0, 184, 17488, 2780752, 689187720, 236477490418, 107317805999204, 62318195302890305, 45081693413563797127, 39762626850034005271588, 42009504510315968282400843, 52381340312720286113688037624, 76118747309505733406576769607755
Offset: 0
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060492).
Cf.
A060486,
A060487,
A060090,
A060092,
A060069,
A060070,
A060051,
A060052,
A060053,
A002718,
A059443.
-
seq(n)={my(m=2*n\2, y='y + O('y^(n+1))); Vec(subst(Pol(serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))), x, 1))} \\ Andrew Howroyd, Jan 30 2020
A060484
Number of 6-block tricoverings of an n-set.
Original entry on oeis.org
1, 95, 3107, 75835, 1653771, 34384875, 700030507, 14116715435, 283432939691, 5679127043755, 113683003777707, 2274630646577835, 45502044971338411, 910133025632152235, 18203564201836161707, 364080180268471397035
Offset: 3
Cf.
A006095,
A060483,
A060485,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
-
With[{c=1/6!},Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240),{n,3,20}]] (* or *) LinearRecurrence[{45,-720,5220,-17664,25920,-12800},{1,95,3107,75835,1653771,34384875},20] (* Harvey P. Dale, Jan 05 2017 *)
-
a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018
A060485
Number of 7-block tricoverings of an n-set.
Original entry on oeis.org
43, 4520, 244035, 10418070, 401861943, 14778678180, 530817413155, 18837147108890, 664260814445943, 23345018969140440, 818942064306004275, 28699514624047140510, 1005201938765467579543, 35196266296400319440300
Offset: 4
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- Index entries for linear recurrences with constant coefficients, signature (110, -4991, 124120, -1887459, 18470550, -118758569, 501056740, -1355000500, 2223560000, -1973160000, 705600000).
Cf.
A006095,
A060483,
A060484,
A060486,
A060090-
A060095,
A060069,
A060070,
A060051-
A060053,
A002718,
A059443,
A003462,
A059945-
A059951.
A059946
Number of 5-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 25, 472, 6185, 70700, 759045, 7894992, 80736625, 817897300, 8241325565, 82783813112, 830046591465, 8313655213500, 83215436364085, 832626645756832, 8329096006484705, 83307920631515300, 833180902353754605, 8332418928963358152, 83327847634888960345
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
-
With[{c=(1/5!)},Table[c(10^n-5 6^n-10 4^n+20 3^n+30 2^n-60),{n,20}]] (* Harvey P. Dale, Apr 21 2011 *)
-
a(n) = {(1/5!)*(10^n - 5*6^n - 10*4^n + 20*3^n + 30*2^n - 60)} \\ Andrew Howroyd, Jan 29 2020
A059947
Number of 6-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 3, 256, 7255, 149660, 2681063, 44659776, 714287535, 11154475420, 171673613023, 2618246526896, 39701554817015, 599773397512380, 9038881598035383, 136004367641775616, 2044264589908169695, 30705868769902628540, 461006369270166660143, 6919274132365824549936
Offset: 1
- I. P. Goulden and D. M.Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
- Georg Fischer, Table of n, a(n) for n = 1..500
- Index entries for linear recurrences with constant coefficients, signature (48,-932,9550,-56319,194762,-382908,387000,-151200).
-
CoefficientList[Series[x^4*(16800*x^4-11362*x^3+2237*x^2-112*x-3) / ((1-x)*(2*x-1)*(3*x-1)*(4*x-1)*(6*x-1)*(7*x-1)*(10*x-1)*(15*x-1)), {x, 0, 21}], x] (* Georg Fischer, May 18 2019 *)
-
a(n)=(1/6!)*(15^n-6*10^n-15*7^n+30*6^n+60*4^n-50*3^n-180*2^n+240) \\ Georg Fischer, May 18 2019
A059948
Number of 7-block bicoverings of an n-set.
Original entry on oeis.org
0, 0, 0, 0, 40, 3306, 131876, 3961356, 103290096, 2488179582, 57162274972, 1274774473632, 27887396866472, 602352276704178, 12899161619186388, 274612697648135028, 5822592730060070368, 123107330974129584294
Offset: 1
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
Comments