cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A110027 Smallest primes starting a complete four iterations Cunningham chain of the first or second kind.

Original entry on oeis.org

2, 1531, 6841, 15391, 44371, 53639, 53849, 57991, 61409, 66749, 83431, 105871, 143609, 145021, 150151, 167729, 186149, 199621, 206369, 209431, 212851, 231241, 242551, 268049, 291271, 296099, 319681, 340919, 346141, 377491, 381631, 422069
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 03 2005

Keywords

Comments

The word "complete" indicates each chain is exactly 5 primes long (i.e., the chain cannot be a subchain of another one).
Terms computed by Gilles Sadowski.

Crossrefs

Formula

Union of A059764 and A110022 . [R. J. Mathar, May 08 2009]

Extensions

Edited and extended by R. J. Mathar, May 08 2009

A152294 Primes of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=4.

Original entry on oeis.org

29, 89, 419, 509, 659, 1259, 1289, 1319, 1949, 2099, 2309, 2339, 2609, 2939, 3989, 4049, 6089, 6599, 7559, 8609, 9239, 9539, 10709, 12659, 12899, 13469, 13499, 18119, 20399, 21089, 21269, 21419, 22469, 23369, 26669, 27539, 28559, 30059, 30449
Offset: 1

Views

Author

Keywords

Comments

This is the general form : (p-n)/(n+1)=primeand(n+1)*p+n=prime; 'Safe' primes and'Sophie Germain' primes just one part of this general form; If n=1 then we got'Safe' primes and'Sophie Germain' primes.

Crossrefs

Programs

  • Mathematica
    lst={};n=4;Do[p=Prime[k];If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n],AppendTo[lst,p]],{k,7!}];lst

A152295 Primes of the form : (p-n)/(n+1)=prime and (n+1)*p+n=prime. n=5.

Original entry on oeis.org

17, 71, 83, 107, 191, 227, 251, 263, 431, 443, 479, 503, 587, 827, 839, 911, 983, 1091, 1151, 1163, 1187, 1619, 1667, 1847, 1907, 2087, 2243, 2459, 2591, 3023, 3467, 4463, 4871, 4943, 5471, 5519, 5651, 5807, 5903, 6131, 6203, 6299, 6311, 6563, 6983, 7127
Offset: 1

Views

Author

Keywords

Comments

This is the general form : (p-n)/(n+1)=primeand(n+1)*p+n=prime; 'Safe' primes and'Sophie Germain' primes just one part of this general form; If n=1 then we got'Safe' primes and'Sophie Germain' primes.

Crossrefs

Programs

  • Mathematica
    lst={};n=5;Do[p=Prime[k];If[PrimeQ[(p-n)/(n+1)]&&PrimeQ[(n+1)*p+n],AppendTo[lst,p]],{k,7!}];lst
    Select[Prime[Range[1000]],AllTrue[{(#-5)/6,6#+5},PrimeQ]&] (* This program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2014 *)

A156658 Primes p such that also 2*p+1 or (p-1)/2 is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 29, 41, 47, 53, 59, 83, 89, 107, 113, 131, 167, 173, 179, 191, 227, 233, 239, 251, 263, 281, 293, 347, 359, 383, 419, 431, 443, 467, 479, 491, 503, 509, 563, 587, 593, 641, 653, 659, 683, 719, 743, 761, 809, 839, 863, 887, 911, 953, 983, 1013
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 13 2009

Keywords

Comments

Union of A005384 and A005385;
The intersection of A005384 and A005385 is given by A059455.
A156660(a(n)) + A156659(a(n)) > 0;
primes occurring in Cunningham chains of the first kind.
A156876 gives the number of these numbers <= n. [Reinhard Zumkeller, Feb 18 2009]

Crossrefs

Programs

  • Maple
    select(t -> isprime(t) and (isprime(2*t+1) or isprime((t-1)/2)), [2,seq(p,p=3..10000,2)]); # Robert Israel, May 03 2016
  • Mathematica
    Select[Prime@ Range@ 180, PrimeQ[2 # + 1] || PrimeQ[(# - 1)/2] &] (* Michael De Vlieger, Apr 06 2016 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(2*p+1) || isprime((p-1)/2), print1(p, ", ")););} \\ Michel Marcus, Apr 06 2016

A059767 Initial (unsafe) primes of Cunningham chains of first type with length exactly 7.

Original entry on oeis.org

1122659, 2164229, 2329469, 10257809, 10309889, 12314699, 14030309, 14145539, 23103659, 24176129, 28843649, 37088729, 42389519, 49160099, 50785439, 62800169, 68718059, 88174049, 95831189, 105388169, 121255889, 138140729, 155439419, 159938459, 173285999
Offset: 1

Views

Author

Labos Elemer, Feb 21 2001

Keywords

Comments

Special primes from A059453.
Primes p such that (2^k)*p+(2^k)-1 is also prime for k = 0, 1, 2, 3, 4, 5, 6 and is composite for k = -1 and k = 7.

Examples

			C7 prime chain is generated from prime a(10) = 24176129 with 2p+1 iterations: 24176129, 48352259, 96704519, 193409039, 386818079, 773636159, 1547272319, 3094544639.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 178 (Rev. ed. 1997).

Crossrefs

Programs

  • Mathematica
    Transpose[Select[{#, Length[NestWhileList[2#+1&, #, PrimeQ]]-1}&/@ Prime[Range[PrimePi[24177000]]], #[[2]]>6&]][[1]]
    Select[Prime[Range[10^6]], PrimeQ[a1=2*#+1]&&PrimeQ[a2=2*a1+1]&&PrimeQ[a3=2*a2+1]&&PrimeQ[a4=2*a3+1]&&PrimeQ[a5=2*a4+1]&&PrimeQ[a6=2*a5+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
  • PARI
    is(n)=n%30==29 && isprime(n) && isprime(2*n+1) && isprime(4*n+3) && isprime(8*n+7) && isprime(16*n+15) && isprime(32*n+31) && isprime(64*n+63) && !isprime(n\2) && !isprime(128*n+127) \\ Charles R Greathouse IV, Dec 01 2016

Extensions

Corrected and extended by Harvey P. Dale, Jul 10 2002
More terms from Vladimir Joseph Stephan Orlovsky, Jan 17 2009
Corrected by John Cerkan, Nov 30 2016

A100930 Semiprimes of the form (2*p+1)*(p-1)/2, p prime.

Original entry on oeis.org

22, 115, 517, 6847, 31951, 128701, 516601, 1037851, 2070001, 4156501, 4254937, 6045451, 7945351, 8425957, 8777887, 9137017, 13124317, 14278951, 14460907, 14920837, 24194101, 29146501, 31795501, 47592751, 48758797, 50108701
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 22 2004

Keywords

Comments

a(n) = (2*A059455(n)^2 - A059455(n) - 1) / 2.

Crossrefs

Subsequence of A100929.

Programs

  • Mathematica
    Select[Table[((2p+1)(p-1))/2,{p,Prime[Range[2000]]}],PrimeOmega[#]==2&] (* Harvey P. Dale, Apr 13 2020 *)

A075705 Safe primes (A005385) (p and (p-1)/2 are primes) such that 6*p+1 is also prime.

Original entry on oeis.org

5, 7, 11, 23, 47, 83, 107, 263, 347, 467, 503, 863, 887, 1283, 1487, 1823, 1907, 2027, 2063, 2447, 2903, 3203, 3623, 4007, 4127, 4547, 4703, 4787, 5387, 5807, 7523, 7703, 8147, 8423, 11423, 11483, 11807, 12107, 12227, 12647, 12983, 13043, 13163, 14087, 14207
Offset: 1

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			47 is prime, so is (47-1)/2=23 and also 6*47+1=283; 83 is a prime, (83-1)/2=41 and 6*83+1=499, ...
		

Crossrefs

Programs

  • Maple
    ts_sg_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sg_var_pras(i), i=1..3000);
  • Mathematica
    Select[Range[20000], PrimeQ[#] && PrimeQ[(#-1)/2] && PrimeQ[6#+1] &] (* T. D. Noe, Nov 07 2011 *)
    Select[Prime[Range[1700]],And@@PrimeQ[{(#-1)/2,6#+1}]&] (* Harvey P. Dale, Feb 28 2013 *)

A075706 Safe primes (A005385) (p and (p-1)/2 are primes) such that 8*p+1 (A023228) is also prime.

Original entry on oeis.org

5, 11, 107, 179, 347, 479, 1187, 1307, 1367, 1487, 1619, 2027, 2207, 2447, 2999, 3119, 3467, 4007, 4079, 4139, 4799, 5087, 5807, 5927, 5939, 6827, 7079, 7247, 8699, 9587, 9839, 10607, 12107, 12539, 12659, 14207, 15299, 16139, 16187, 17027
Offset: 1

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			11 is a prime, so is (11-1)/2=5 and also 8*11+1=89; 107 is a prime, (107-1)/2=53 and 8*107+1=857, ...
		

Crossrefs

Programs

  • Maple
    ts_sg8_var_pras := proc(nmax) local i,tren,atek; tren := 0: for i from 1 to nmax do atek := numtheory[safeprime](i): if (atek > tren) then if (isprime(atek)='true' and isprime(6*atek+1)='true') then tren := atek: fi; fi; od; end: seq(ts_sg8_var_pras(i), i=1..3000);
  • Mathematica
    Select[Prime[Range[2000]],AllTrue[{(#-1)/2,8#+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 31 2020 *)
  • PARI
    forprime(p=3,20000,if(isprime((p-1)/2),if(isprime(8*p+1),print1(p","))))

Extensions

More terms from Ralf Stephan, Mar 19 2003

A122173 Expansion of -x * (x^5+x^4-15*x^3+19*x^2-8*x+1) / (x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1).

Original entry on oeis.org

1, -5, 10, -45, 110, -421, 1148, -4037, 11697, -39250, 117736, -384657, 1177235, -3787218, 11727187, -37389217, 116571621, -369712938, 1157315631, -3659226205, 11481436216, -36237006073, 113856243558, -358967583724, 1128781753801, -3556642214960, 11189229179710
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 17 2006

Keywords

Crossrefs

Cf. A046854. Cf. A046854. Cf. A007700, A059455. Cf. A065941.

Programs

  • Mathematica
    M = {{0, -1, -1, -1, -1, -1}, {-1, 0, -1, -1, -1, 0}, {-1, -1, 0, -1, 0, 0}, {-1, -1, -1, 1, 0, 0}, {-1, -1, 0, 0, 1, 0}, {-1, 0, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{3,6,-30,34,-12,1},{1,-5,10,-45,110,-421},30] (* Harvey P. Dale, Mar 16 2025 *)

Formula

G.f.: -x*(x^5+x^4-15*x^3+19*x^2-8*x+1)/(x^6-12*x^5+34*x^4-30*x^3+6*x^2+3*x-1). [Colin Barker, Oct 19 2012]

Extensions

Sequence edited by Joerg Arndt, Colin Barker, Bruno Berselli, Oct 19 2012

A122174 First row sum of the matrix M^n, where M is the 5 X 5 matrix {{0,-1,-1,-1,-1}, {-1,0,-1,-1,0}, {-1,-1,0,0,0}, {-1,-1,0,1,0}, {-1,0,0,0,1}}.

Original entry on oeis.org

1, -4, 6, -24, 41, -145, 273, -886, 1789, -5457, 11605, -33807, 74761, -210366, 479256, -1313465, 3061242, -8222492, 19501429, -51579259, 123983182, -324067194, 787044384, -2038584810, 4990387355, -12836179872, 31614557443, -80883958143, 200146505560, -509959672813
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 17 2006

Keywords

Crossrefs

Programs

  • Maple
    with(linalg): M[1]:=matrix(5,5,[0,-1,-1,-1,-1,-1,0,-1,-1,0,-1,-1,0,0,0,-1,-1,0,1, 0,-1,0,0,0,1]): for n from 2 to 30 do M[n]:=multiply(M[n-1],M[1]) od: 1,seq(M[n][1,1]+M[n][1,2]+M[n][1,3]+M[n][1,4]+M[n][1,5],n=1..30);
  • Mathematica
    M = {{0, -1, -1, -1, -1}, {-1, 0, -1, -1, 0}, {-1, -1, 0, 0, 0}, {-1, -1, 0, 1, 0}, {-1, 0, 0, 0, 1}}; v[1] = {1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 25}]
  • PARI
    a(n) = my(m=[0,-1,-1,-1,-1; -1,0,-1,-1,0; -1,-1,0,0,0; -1,-1,0,1,0; -1,0,0,0,1]); vecsum((m^n)[1,]); \\ Michel Marcus, Jun 21 2017

Formula

a(n) = 2*a(n-1)+5*a(n-2)-13*a(n-3)+7*a(n-4)-a(n-5); a(0)=1, a(1)=-4, a(2)=6, a(3)=-24, a(4)=41 (follows from the minimal polynomial x^5-2*x^4-5*x^3+13*x^2-7*x+1 of the matrix M).
G.f.: (1-3*x^3+9*x^2-6*x)/(1+x^5-7*x^4+13*x^3-5*x^2-2*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009

Extensions

Edited by N. J. A. Sloane, Oct 29 2006
Previous Showing 21-30 of 36 results. Next