cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 75 results. Next

A113788 Number of irreducible multiple zeta values at weight n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 21, 28, 34, 45, 56, 73, 92, 120, 151, 197, 250, 324, 414, 537, 687, 892, 1145, 1484, 1911, 2479, 3196, 4148, 5359, 6954, 9000, 11687, 15140, 19672, 25516, 33166, 43065, 56010, 72784, 94716, 123185
Offset: 1

Views

Author

R. J. Mathar, Jan 27 2006

Keywords

Comments

n * a(n) is the Möbius transform of the Perrin sequence A001608.
Number of unlabeled (i.e., defined up to a rotation) maximal independent sets of the n-cycle graph having n isomorphic representatives. - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Crossrefs

Programs

  • Maple
    A113788 := proc(n::integer)
        local resul,d;
        resul :=0;
        for d from 1 to n do
            if n mod d = 0 then
                resul := resul +numtheory[mobius](n/d)*A001608(d);
            fi;
        od:
        RETURN(resul/n);
    end: # R. J. Mathar, Apr 25 2006
  • Mathematica
    (* p = A001608 *) p[n_] := p[n] = p[n-2] + p[n-3]; p[0] = 3; p[1] = 0; p[2] = 2; a[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
  • Sage
    z = PowerSeriesRing(ZZ, 'z').gen().O(30)
    r = (1 - (z**2 + z**3))
    F = -z*r.derivative()/r
    [sum(moebius(n//d)*F[d] for d in divisors(n))//n for n in range(1, 24)] # F. Chapoton, Apr 24 2020

Formula

a(n) = (1/n) * Sum_{d|n} mu(n/d)*Perrin(d), where Perrin(d) = A001608 starting with 0, 2, 3, ... .
a(n) = Sum_{d|n} mu(n/d)*A127687(d) = (1/n) * Sum_{d|n} mu(n/d)*A001608(d). - Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007
For p an odd prime, a(p) = Sum_{i=0..floor((p-3)/6)} (A(i)+B(i)-1)!/(A(i)!*B(i)!), where A(i) = (p-3)/2 - 3*i, and B(i) = 1 + 2*i. - Richard Turk, Sep 08 2015
a(n) ~ A060006^n / n. - Vaclav Kotesovec, Oct 09 2019

A126772 Padovan factorials: a(n) is the product of the first n terms of the Padovan sequence. Similar to the Fibonacci factorial.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 48, 240, 1680, 15120, 181440, 2903040, 60963840, 1706987520, 63158538240, 3094768373760, 201159944294400, 17299755209318400, 1972172093862297600, 297797986173206937600, 59559597234641387520000
Offset: 1

Views

Author

John Lien, Feb 17 2007

Keywords

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Sep 14 2010: (Start)
    A000931 := proc(n) option remember; if n = 0 then 1; elif n <=2 then 0; else procname(n-2)+procname(n-3) ; end if; end proc:
    A126772 := proc(n) mul( A000931(i),i=5..n+4) ; end proc: seq(A126772(n),n=1..40) ; (End)
  • Mathematica
    Rest[FoldList[Times,1,LinearRecurrence[{0,1,1},{1,1,1},30]]] (* Harvey P. Dale, Apr 29 2013 *)

Formula

a(n) ~ c * d^(n/2) * r^(n^2/2), where r = 1.324717957244746... (see A060006) is the root of the equation r^3 = r + 1, d = 0.393641282401116385386658448446561... is the root of the equation 1 + 7*d + 184*d^2 - 529*d^3 = 0, c = 1.25373683131537208838997864311903035079685338006712312402418098138010834953... (see A253924). - Vaclav Kotesovec, Jan 26 2015

Extensions

More terms from R. J. Mathar, Sep 14 2010

A293508 Decimal expansion of the positive real root of x^6 - x^5 - x^4 + x^2 - 1.

Original entry on oeis.org

1, 5, 0, 1, 5, 9, 4, 8, 0, 3, 5, 3, 9, 0, 8, 7, 3, 6, 6, 3, 7, 7, 7, 8, 3, 1, 2, 7, 3, 7, 1, 0, 4, 6, 1, 0, 8, 4, 8, 6, 3, 9, 8, 3, 3, 6, 2, 5, 3, 5, 8, 5, 3, 4, 2, 2, 4, 8, 3, 9, 4, 1, 8, 6, 0, 6, 3, 3, 4, 3, 6, 1, 2, 5, 9, 7, 1, 2, 8, 8, 9, 8, 1, 3, 4, 1, 1, 4, 2, 4, 6, 0, 2, 9, 2, 0, 0, 2, 0, 1, 7, 2, 5, 5, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the fifth smallest of the Pisot numbers.

Examples

			1.501594803539087366377783...
		

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[Root[#^6 - #^5 - #^4 + #^2 - 1 &, 2], 10, 105] (* Michael De Vlieger, Oct 23 2017 *)
  • PARI
    solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1) \\ Michel Marcus, Oct 11 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^6 - x^5 - x^4 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293508.txt", n, " ", d)); }

A293509 Decimal expansion of real root of x^5 - x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 5, 3, 4, 1, 5, 7, 7, 4, 4, 9, 1, 4, 2, 6, 6, 9, 1, 5, 4, 3, 5, 9, 7, 0, 0, 7, 6, 1, 0, 9, 3, 7, 5, 7, 0, 1, 8, 8, 2, 5, 4, 5, 0, 3, 8, 5, 1, 6, 5, 9, 5, 1, 3, 5, 3, 6, 8, 5, 3, 1, 8, 6, 3, 0, 0, 8, 0, 6, 3, 0, 2, 3, 2, 1, 4, 0, 8, 2, 2, 8, 1, 4, 3, 6, 7, 8
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the sixth smallest of the Pisot numbers.

Examples

			1.53415774491426691543597007610937570188254503851659513536853186300806302321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Solve[ x^5 - x^3 - x^2 - x - 1 == 0, x, WorkingPrecision -> 111][[-1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Nov 04 2017 *)
  • PARI
    solve(x=1, 2, x^5 - x^3 - x^2 - x - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^5 - x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293509.txt", n, " ", d)); \\ Iain Fox, Oct 23 2017
    
  • PARI
    polrootsreal(x^5 - x^3 - x^2 - x - 1)[1] \\ Charles R Greathouse IV, Nov 04 2017

A293557 Decimal expansion of real root of x^7 - x^6 - x^5 + x^2 - 1.

Original entry on oeis.org

1, 5, 4, 5, 2, 1, 5, 6, 4, 9, 7, 3, 2, 7, 5, 5, 2, 4, 3, 2, 5, 2, 5, 5, 0, 6, 2, 4, 1, 0, 5, 1, 1, 6, 1, 1, 9, 6, 9, 1, 4, 7, 0, 0, 5, 5, 3, 6, 4, 2, 3, 3, 1, 2, 3, 5, 6, 0, 6, 1, 0, 7, 2, 5, 4, 9, 8, 2, 1, 1, 5, 8, 8, 1, 6, 6, 5, 3, 3, 1, 2, 0, 5, 0, 4, 3, 1
Offset: 1

Views

Author

Iain Fox, Oct 11 2017

Keywords

Comments

This root is also the seventh smallest of the Pisot numbers.

Examples

			1.545215649732755243252550...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^7 - #^6 - #^5 + #^2 - 1 &, 1], 10, 100]] (* Paolo Xausa, Jun 25 2024 *)
  • PARI
    solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1) \\ Michel Marcus, Oct 13 2017
    
  • PARI
    { default(realprecision, 20080); x=solve(x=1, 2, x^7 - x^6 - x^5 + x^2 - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b293557.txt", n, " ", d)); }

A012855 a(0) = 0, a(1) = 1, a(2) = 1; thereafter a(n) = 5*a(n-1) - 4*a(n-2) + a(n-3).

Original entry on oeis.org

0, 1, 1, 1, 2, 7, 28, 114, 465, 1897, 7739, 31572, 128801, 525456, 2143648, 8745217, 35676949, 145547525, 593775046, 2422362079, 9882257736, 40315615410, 164471408185, 670976837021, 2737314167775, 11167134898976
Offset: 0

Views

Author

Keywords

Comments

Old name was "Take every 5th term of Padovan sequence A000931".
Lim_{n -> infinity} a(n+1)/a(n) = p^5 = 4.0795956..., where p is the plastic constant (A060006). - Jianing Song, Feb 04 2019

Crossrefs

Programs

  • Maple
    A012855 := proc(n,A,B,C) option remember; if n = 0 then A elif n = 1 then B elif n = 2 then C else 5*procname(n-1,A,B,C)-4*procname(n-2,A,B,C)+procname(n-3,A,B,C); fi; end; [ seq(A012855(i,0,1,1),i = 0..40) ]; # R. J. Mathar, Dec 30 2011
  • Mathematica
    CoefficientList[Series[(4x^2-x)/(x^3-4x^2+5x-1),{x,0,40}],x] (* or *) LinearRecurrence[{5,-4,1},{0,1,1},40] (* Harvey P. Dale, Mar 28 2013 *)
  • PARI
    a(n) = my(v=vector(n+1), u=[0,1,1]); for(k=1, n+1, v[k]=if(k<=3, u[k], 5*v[k-1] - 4*v[k-2] + v[k-3])); v[n+1] \\ Jianing Song, Feb 04 2019

Formula

a(n) = A000931(5*n-12) for n >= 3. - Alois P. Heinz, Feb 04 2019
G.f. (4x^2 - x)/(x^3 - 4x^2 + 5x - 1). For n > 2, a(n) = 1 + Sum_{k=0..n-3} A012814(k). - Ralf Stephan, Jan 15 2004
a(n) = 1 + A176476(n-3) = 1 + Sum_{k=0..n-3} A000931(5*k+2) for n >= 3. - Jianing Song, Feb 04 2019

Extensions

Edited by N. J. A. Sloane, Feb 06 2019 at the suggestion of Jianing Song, replacing imprecise definition with formula from Harvey P. Dale, Mar 28 2013

A051016 Numbers n for which r^n-floor(r^n) < 1/2, where r is the real root of x^3-x-1.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 17, 19, 22, 24, 25, 27, 29, 30, 32, 35, 37, 38, 40, 42, 43, 45, 48, 50, 53, 55, 56, 58, 60, 61, 63, 66, 68, 71, 73, 74, 76, 78, 79, 81, 84, 86, 89, 91, 92, 94, 97, 99, 102, 104, 105, 107, 109, 110, 112, 115, 117, 120, 122, 123, 125, 127
Offset: 1

Views

Author

Keywords

Comments

For large powers, r^n is very close to an integer.

Crossrefs

Cf. A051017, A060006 (r = 1.32471...).

Programs

  • Mathematica
    Flatten[ With[ {r = Root[ -1 - #1 + #1^3 &, 1 ]}, Position[ Table[ r^n - Floor[ r^n ], {n, 1, 200} ], _?(#1 < 1/2 & ), 1 ] ] ]

Extensions

Corrected by Don Reble, May 04 2006

A051017 Numbers n for which r^n-floor(r^n) > 1/2, where r is the real root of x^3-x-1.

Original entry on oeis.org

2, 9, 10, 13, 15, 16, 18, 20, 21, 23, 26, 28, 31, 33, 34, 36, 39, 41, 44, 46, 47, 49, 51, 52, 54, 57, 59, 62, 64, 65, 67, 69, 70, 72, 75, 77, 80, 82, 83, 85, 87, 88, 90, 93, 95, 96, 98, 100, 101, 103, 106, 108, 111, 113, 114, 116, 118, 119, 121, 124, 126, 129, 131
Offset: 1

Views

Author

Keywords

Comments

For large powers, r^n is very close to an integer.

Crossrefs

Programs

  • Mathematica
    Flatten[ With[ {r = Root[ -1 - #1 + #1^3 &, 1 ]}, Position[ Table[ r^n - Floor[ r^n ], {n, 1, 200} ], _?(#1 > 1/2 & ), 1 ] ] ]

Extensions

Corrected by Don Reble, May 04 2006

A230163 Decimal expansion of the positive real solution of the equation x^k-x-1=0. Case k=10.

Original entry on oeis.org

1, 0, 7, 5, 7, 6, 6, 0, 6, 6, 0, 8, 6, 8, 3, 7, 1, 5, 8, 0, 5, 9, 5, 9, 9, 5, 2, 4, 1, 6, 5, 2, 7, 5, 8, 2, 0, 6, 9, 2, 5, 3, 0, 2, 4, 7, 6, 3, 9, 2, 0, 3, 2, 7, 9, 4, 7, 7, 0, 6, 8, 3, 9, 4, 5, 4, 4, 4, 7, 2, 6, 2, 6, 9, 5, 8, 5, 8, 2, 1, 6, 1, 9, 3, 3, 6, 1
Offset: 1

Views

Author

Paolo P. Lava, Oct 11 2013

Keywords

Comments

Also decimal expansion of (1+(1+(1+ ... )^(1/k))^(1/k))^(1/k), with k integer and k<0. Case k=10.

Examples

			1.0757660660868371580595995241652758206925302476392032794...
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q,h) local a,n; a:=(q+1)^(1/h);
    for n from q by -1 to 1 do a:=(1+a)^(1/h);od;
    print(evalf(a,1000)); end: P(1000,10);
  • Mathematica
    Root[x^10 - x - 1, 2] // RealDigits[#, 10, 100]& // First (* Jean-François Alcover, Feb 18 2014 *)
  • PARI
    polrootsreal(x^10-x-1)[2] \\ Charles R Greathouse IV, Feb 11 2025

A333374 G.f.: Sum_{k>=1} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)/(1 - x^j)).

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, 28, 34, 42, 52, 62, 75, 90, 106, 126, 150, 176, 208, 246, 288, 338, 397, 462, 538, 626, 724, 838, 968, 1114, 1282, 1474, 1690, 1936, 2217, 2532, 2890, 3296, 3750, 4264, 4844, 5492, 6222, 7042, 7958, 8986, 10138
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 17 2020

Keywords

Comments

The g.f. Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j) = Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j + 2*x^j) == Sum_{k >= 1} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[(1+x^k)/(1-x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

Limit_{n->infinity} A066447(n) / a(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... (the tribonacci constant).
Compare with: A306734(n) / A333179(n) -> A060006 (the plastic constant) and A003114(n) / A003106(n) -> A001622 (golden ratio).
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.10511708841962944170826735560432... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 - sinh(arcsinh(sqrt(11)/4)/3) / (12*sqrt(11))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 17 2020, updated Oct 10 2024
Previous Showing 21-30 of 75 results. Next