cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A060006 Decimal expansion of real root of x^3 - x - 1 (the plastic constant).

Original entry on oeis.org

1, 3, 2, 4, 7, 1, 7, 9, 5, 7, 2, 4, 4, 7, 4, 6, 0, 2, 5, 9, 6, 0, 9, 0, 8, 8, 5, 4, 4, 7, 8, 0, 9, 7, 3, 4, 0, 7, 3, 4, 4, 0, 4, 0, 5, 6, 9, 0, 1, 7, 3, 3, 3, 6, 4, 5, 3, 4, 0, 1, 5, 0, 5, 0, 3, 0, 2, 8, 2, 7, 8, 5, 1, 2, 4, 5, 5, 4, 7, 5, 9, 4, 0, 5, 4, 6, 9, 9, 3, 4, 7, 9, 8, 1, 7, 8, 7, 2, 8, 0, 3, 2, 9, 9, 1
Offset: 1

Views

Author

Fabian Rothelius, Mar 14 2001

Keywords

Comments

Has been also called the silver number, also the plastic number.
This is the smallest Pisot-Vijayaraghavan number.
The name "plastic number" goes back to the Dutch Benedictine monk and architect Dom Hans van der Laan, who gave this name 4 years after the discovery of the number by the French engineer Gérard Cordonnier in 1924, who used the name "radiant number". - Hugo Pfoertner, Oct 07 2018
Sometimes denoted by the symbol rho. - Ed Pegg Jr, Feb 01 2019
Also the solution of 1/x + 1/(1+x+x^2) = 1. - Clark Kimberling, Jan 02 2020
Given any complex p such that real(p)>-1, this constant is the only real solution of the equation z^p+z^(p+1)=z^(p+3), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+3)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The Pisot-Vijayaraghavan numbers were named after the French mathematician Charles Pisot (1910-1984) and the Indian mathematician Tirukkannapuram Vijayaraghavan (1902-1955). - Amiram Eldar, Apr 02 2022
The sequence a(n) = v_3^floor(n^2/4) where v_n is the smallest, positive, real solution to the equation (v_n)^n = v_n + 1 satisfies the Somos-5 recursion a(n+3)*a(n-2) = a(n+2)*a(n-1) + a(n+1)*a(n) for all n in Z. Also true if floor is removed. - Michael Somos, Mar 24 2023

Examples

			1.32471795724474602596090885447809734...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Midhat J. Gazalé, Gnomon: From Pharaohs to Fractals, Princeton University Press, Princeton, NJ, 1999, see Chap. VII.
  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4, p. 236.
  • Ian Stewart, A Guide to Computer Dating (Feedback), Scientific American, Vol. 275 No. 5, November 1996, p. 118.

Crossrefs

Cf. A001622. A072117 gives continued fraction.
Other Pisot numbers: A086106, A092526, A228777, A293506, A293508, A293509, A293557.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ((3+Sqrt(23/3))/6)^(1/3) + ((3-Sqrt(23/3))/6)^(1/3); // G. C. Greubel, Mar 15 2019
    
  • Maple
    (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) ; evalf(%,130) ; # R. J. Mathar, Jan 22 2013
  • Mathematica
    RealDigits[ Solve[x^3 - x - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Sep 30 2009 *)
    s = Sqrt[23/108]; RealDigits[(1/2 + s)^(1/3) + (1/2 - s)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 12 2017 *)
    RealDigits[Root[x^3-x-1,1],10,120][[1]] (* or *) RealDigits[(Surd[9-Sqrt[69],3]+Surd[9+Sqrt[69],3])/(Surd[2,3]Surd[9,3]),10,120][[1]] (* Harvey P. Dale, Sep 04 2018 *)
  • PARI
    allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060006.txt", n, " ", d)); \\ Harry J. Smith, Jul 01 2009
    
  • PARI
    (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) \\ Altug Alkan, Apr 10 2016
    
  • PARI
    polrootsreal(x^3-x-1)[1] \\ Charles R Greathouse IV, Aug 28 2016
    
  • PARI
    default(realprecision, 110); digits(floor(solve(x=1, 2, x^3 - x - 1)*10^105)) /* Michael Somos, Mar 24 2023 */
    
  • Sage
    numerical_approx(((3+sqrt(23/3))/6)^(1/3) + ((3-sqrt(23/3))/6)^(1/3), digits=100) # G. C. Greubel, Mar 15 2019

Formula

Equals (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3). - Henry Bottomley, May 22 2003
Equals CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + ...)))). - Gerald McGarvey, Nov 26 2004
Equals sqrt(1+1/sqrt(1+1/sqrt(1+1/sqrt(1+...)))). - Gerald McGarvey, Mar 18 2006
Equals (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3). - Eric Desbiaux, Oct 17 2008
Equals Sum_{k >= 0} 27^(-k)/k!*(Gamma(2*k+1/3)/(9*Gamma(k+4/3)) - Gamma(2*k-1/3)/(3*Gamma(k+2/3))). - Robert Israel, Jan 13 2015
Equals sqrt(Phi) = sqrt(1.754877666246...) (see A109134). - Philippe Deléham, Sep 29 2020
Equals cosh(arccosh(3*c)/3)/c, where c = sqrt(3)/2 (A010527). - Amiram Eldar, May 15 2021
Equals 1/hypergeom([1/5, 2/5, 3/5, 4/5], [2/4, 3/4, 5/4], -5^5/4^4). - Gerry Martens, Mar 16 2025

Extensions

Edited and extended by Robert G. Wilson v, Aug 03 2002
Removed incorrect comments, Joerg Arndt, Apr 10 2016

A051017 Numbers n for which r^n-floor(r^n) > 1/2, where r is the real root of x^3-x-1.

Original entry on oeis.org

2, 9, 10, 13, 15, 16, 18, 20, 21, 23, 26, 28, 31, 33, 34, 36, 39, 41, 44, 46, 47, 49, 51, 52, 54, 57, 59, 62, 64, 65, 67, 69, 70, 72, 75, 77, 80, 82, 83, 85, 87, 88, 90, 93, 95, 96, 98, 100, 101, 103, 106, 108, 111, 113, 114, 116, 118, 119, 121, 124, 126, 129, 131
Offset: 1

Views

Author

Keywords

Comments

For large powers, r^n is very close to an integer.

Crossrefs

Programs

  • Mathematica
    Flatten[ With[ {r = Root[ -1 - #1 + #1^3 &, 1 ]}, Position[ Table[ r^n - Floor[ r^n ], {n, 1, 200} ], _?(#1 > 1/2 & ), 1 ] ] ]

Extensions

Corrected by Don Reble, May 04 2006

A205579 a(n) = round(r^n) where r is the smallest Pisot number (real root r=1.3247179.. of x^3-x-1).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 13, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289, 727653, 963935, 1276942, 1691588, 2240877, 2968530, 3932465
Offset: 0

Views

Author

Joerg Arndt, Jan 29 2012

Keywords

Crossrefs

Cf. A112639 (definition using floor() instead of round()).
Cf. A060006 (decimal expansion of r=1.32471795724475...).

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3),{x,0,100}],x] (* Vincenzo Librandi, Aug 19 2012 *)
    r = Root[x^3-x-1, 1]; Table[Round[r^i], {i,0,100 }] (* Jwalin Bhatt, Mar 27 2025 *)
  • PARI
    default(realprecision, 110);
    default(format, "g.15");
    r=real(polroots(x^3-x-1)[1])
    v=vector(66, n, round(r^(n-1)) )
    
  • PARI
    Vec((1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3)+O(x^66))

Formula

G.f.: (1+x+x^2+x^9+x^10-x^12)/(1-x^2-x^3).
From Jwalin Bhatt, Mar 26 2025: (Start)
a(n) = round(((1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3))^n).
a(n) = a(n-2) + a(n-3) for n>=13. (End)

A084252 A measure of how close r^n is to an integer where r is the real root of x^3-x-1, i.e.. r = (1/2 + sqrt(23/108))^(1/3) + (1/2 - sqrt(23/108))^(1/3) = 1.3247.... (Higher absolute value of a(n) means closer, negative means less than closest integer.)

Original entry on oeis.org

3, -4, 3, 13, 13, 2, 6, 2, -2, -3, 21, 5, -3, 4, -10, -18, 7, -6, 10, -139, -16, 11, -14, 39, 54, -23, 23, -39, 3479, 53, -40, 52, -158, -165, 78, -81, 148, 2429, -177, 140, -191, 657, 517, -269, 289, -563, -3923, 595, -492, 702, -2833, -1645, 933, -1041, 2156, 9021, -2012, 1740, -2590, 12872, 5304, -3242, 3756
Offset: 1

Views

Author

Henry Bottomley, May 22 2003

Keywords

Examples

			a(4)=13 since r^4 = 3.0795956..., 1/(3.0795956...-round(3.0795956...)) = 1/0.0795956... = 12.5635... and round(12.5635...) = 13.
		

Crossrefs

Positive values when n is in A051016 and negative when n is in A051017.

Formula

a(n) = round(1/(r^n - round(r^n))).

A112639 a(n) = floor(r^n) where r is the smallest Pisot number (real root r=1.3247179... of x^3-x-1).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 38, 51, 67, 89, 119, 157, 209, 276, 366, 486, 643, 853, 1130, 1496, 1983, 2626, 3480, 4610, 6106, 8090, 10716, 14196, 18807, 24913, 33004, 43721, 57917, 76725, 101638, 134643, 178364, 236281, 313007, 414645
Offset: 0

Views

Author

Roger L. Bagula, Mar 31 2006

Keywords

Crossrefs

Cf. A060006 (decimal expansion of r=1.32471795724475...).
Cf. A205579 (definition using round() instead of floor()).

Programs

  • Mathematica
    r = Solve[x^3 - x - 1 == 0, x][[1,1,2]]; Table[Floor[r^n], {n, 0, 50}] (* T. D. Noe, Jan 30 2012 *)
  • PARI
    default(realprecision,110);
    default(format,"g.15");
    r=real(polroots(x^3-x-1)[1])
    v=vector(66, n, floor(r^(n-1)) )  /* Joerg Arndt, Jan 29 2012 */

Formula

a(n) = floor(((1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3))^n). - Jwalin Bhatt, May 06 2025

Extensions

Completely edited by Joerg Arndt, Jan 29 2012

A193627 Indices n such that Perrin(n) < r^n where r is the real root of the polynomial x^3-x-1.

Original entry on oeis.org

1, 4, 6, 7, 9, 11, 12, 14, 17, 19, 22, 24, 25, 27, 29, 30, 32, 35, 37, 38, 40, 42, 43, 45, 48, 50, 53, 55, 56, 58, 60, 61, 63, 66, 68, 71, 73, 74, 76, 78, 79, 81, 84, 86, 89, 91, 92, 94, 97, 99, 102, 104, 105, 107, 109, 110, 112, 115, 117, 120, 122, 123, 125
Offset: 1

Views

Author

Francesco Daddi, Aug 01 2011

Keywords

Comments

r is the so-called plastic number (A060006).
Perrin(n) = r^n + s^n + t^n where r (real), s, t are the three roots of x^3-x-1.
Also Perrin(n) is asymptotic to r^n.
To calculate r^n (for n>2) we can observe that: r^n=s(n)*r^2+t(n)*r+u(n) where s(3)=0, t(3)=1, u(3)=1; s(n+1)=t(n), t(n+1)=s(n)+u(n), u(n+1)=s(n). - Francesco Daddi, Aug 02 2011

Examples

			For n=27 Perrin(27) = A001608(27) = 1983 < 1983.044... = r^27
		

Crossrefs

Programs

  • Mathematica
    lim = 200; R = Solve[x^3 - x - 1 == 0, x][[1, 1, 2]]; powers = Table[Floor[R^n], {n, 0, lim}]; p = CoefficientList[Series[(3 - x^2)/(1 - x^2 - x^3), {x, 0, lim}], x]; Select[Range[lim + 1], p[[#]] <= powers[[#]] &] - 1 (* T. D. Noe, Aug 02 2011 *)
Showing 1-6 of 6 results.